

CONTENTS

1 st Semester	5
GEO1010 – MATHEMATICAL ANALYSIS	6
GEO1020 – LINEAR ALGEBRA AND MATRIX ANALYSIS	9
GEO1030 – INFORMATICS AND PROGRAMMING	13
GEO1040 – FUNDAMENTALS OF GEODESY AND SURVEYING ENGINEERING	16
GEO1050 – TECHNICAL AND TOPOGRAPHIC DRAWING	19
GEO1060 – INTRODUCTION TO ECONOMICS	22
GEO1070 – PHILOSOPHY OF SCIENCE	25
2 nd Semester	28
GEO2010 – PROBABILITY THEORY AND STATISTICS	29
GEO2020 – PROGRAMMING TECHNIQUES AND ALGORITHMS	32
GEO2030 – DIFFERENTIAL EQUATIONS	35
GEO2040 – SURVEYING INSTRUMENTS AND MEASURING METHODS	38
GEO2050 – ANALYTICAL GEOMETRY	42
GEO2060 – PHYSICS I (MECHANICS)	45
3 rd Semester	50
GEO3010 – THEORY OF ERRORS & ADJUSTMENT OF OBSERVATIONS I	
GEO3020 – CONSTRUCTION SURVEYING	54
GEO3030 – PHYSICS II (ELECTROMAGNETISM & OPTICS)	57
GEO3040 – NUMERICAL METHODS	60
GEO3050 – GENERAL AND MATHEMAICAL CARTOGRAPHY	63
GEO3060 – Descriptive and Perspective Geometry	70
GEO3070 – PHYSICAL GEOGRAPHY & ENVIRONMENTAL MANAGEMENT	73
4 th Semester	77
GEO4010 – PHOTOGRAMMETRY I (Introduction to Photogrammetry)	78
GEO4020 – SURVEYING NETWORKS AND COMPUTATIONS	81
GEO4030 – THEMATIC CARTOGRAPHY	84
GEO4040 – URBAN HYDRAULIC WORKS	89
GEO4050 – ANALYTICAL CARTOGRAPHY	92
GEO4060 – ENGINEERING MECHANICS	98
GEO4070 – Remote Sensing I	101

5 th Semester	105
GEO5010 – GEOMETRICAL GEODESY	106
GEO5020 – PHOTOGRAMMETRY II (Analytical Photogrammetry)	109
GEO5030 – ROAD GEOMETRIC DESIGN I	112
GEO5040 – GEOGRAPHIC INFORMATION SYSTEMS & SCIENCE	116
GEO5050 – SATELLITE SURVEYING	121
GEO5060 – TECHNICAL HYDROLOGY	125
GEO5070 – DATABASE PROGRAMMING	129
6 th Semester	132
GEO6010 – INTRODUCTION TO DIGITAL IMAGE PROCESSING	133
GEO6020 – URBAN PLANNING	136
GEO6030 – REMOTE SENSING II	140
GEO6040 – SPATIAL DECISION SUPPORT SYSTEMS	143
GEO6050 – SURVEYING FIELD COURSE	148
GEO6060 – SPATIAL ANALYSIS	151
GEO6070 – SPATIAL DATABASES AND DIGITAL – CARTOGRAPHY	154
7 th Semester	159
GEO7010 – LAND MANAGEMENT & REAL ESTATE	160
GEO7020 – PHOTOGRAMMETRY III (Digital Photogrammetry & Computer Vision)	164
GEO7030 – CADASTRE	167
GEO7040 – ERROR THEORY & OBSERVATIONS ADJUSTMENT II	170
GEO7050 – SPATIAL PLANNING AND REGIONAL DEVELOPMENT	173
GEO7060 – GEODETIC-SURVEYING APPLICATIONS	177
GEO7070 – SPECIAL TOPICS IN REMOTE SENSING	180
GEO7080 – ANALYTICAL METHODS IN GIS	183
GEO7090 – ARCHITECTURE	188
GEO7100 – SOIL MECHANICS AND FOUNDATIONS	193
GEO7110 – PHYSICAL GEODESY	197
GEO7120 – APPLIED GEOPHYSICS	200
GEO7130 – APPLIED OPTICS AND LASER TECHNOLOGIES	203
GEO7140 – SYSTEM THEORY, SDB AND ELECTRONIC MAPS AND INFORMA SYSTEMS (ECDIS)	
GEO7160 – Cadastral, Urban Planning & Infrastructure Systems	214
GEO7170 – BUILDING CONSTRUCTION DESIGN. TECHNOLOGY & MATERIALS	218

	GEO7180 – STRUCTURAL EQUIPMENT & CONSTRUCTION SITE MANAGEMENT	222
	GEO7190 – AGRICULTURAL DRAINAGE SYSTEMS	225
	GEO7200 – TRASPORTATION INFRASTRUCTURE CONSTRUCTURAL ASPECTS	231
	GEO7210 – SUSTAINABLE URBAN DEVELOPMENT	234
8 ^t	^h Semester	240
	GEO8010 – TRANSPORTATION ANALYSIS AND PLANNING	241
	GEO8020 – GEOSPATIAL DATA MANAGEMENT IN WEB ENVIRONMENT	244
	GEO8030 – SIGNAL ANALYSIS & PROCESSING	249
	GEO8040 – DIGITAL SYSTEMS & SENSORS	252
	GEO8050 – REFERENCE AND TIME SYSTEMS	255
	GEO8060 – SPECIAL TOPICS IN PHOTOGRAMMETRY & COMPUTER VISION	258
	GEO8070 – 3D DATA PROCESSING & VISUALIZATION	261
	GEO8080 – CADASTRAL APPLICATIONS & LAND INFORMATION SYSTEMS	264
	GEO8090 – ROAD DESIGN II	268
	GEO8100 – WATER RESOURCES MANAGEMENT	271
	GEO8110 – GRAVIMETRY	275
	GEO8120 - NAVIGATION	278
	GEO8130 – GREAT GEODETIC EXERCISES	281
	GEO8140 – INTERGRATED URBAN INTERVENTIONS	284
	GEO8150 – ECONOMIC GEOGRAPHY	291
	GEO8160 – INTERNSHIP	294
	GEO8170 – REINFORCED CONCRETE	297
	GEO8180 – DEEPENING IN GEOGRAPHIC INFORMATION SYSTEMS	300
	GEO8190 – ENVIROMENTAL IMPACTS	305
	GEO8200 – COMPUTER GRAPHICS	308
9 ^t	^h Semester	311
	GEO9010 – TECHNICAL LEGISLATION & ADMINISTRATION	312
	GEO9020 – MOBILE MAPPING – UNMANNED AERIAL VECHICLE (UAV)	316
	GEO9030 – APPLIED SATELLITE POSITIONING	319
	GEO9040 – INTRODUCTION TO MACHINE LEARNING	323
	GEO9050 – PROGRAMMING IN GEOINFORMATICS	326
	GEO9060 – SPECIAL CHAPTERS IN CARTOGRAPHIC DATA VISUALIZATION	330
	GEO9070 – OPEN CHANNEL HYDRAULICS AND RIVER ENGINEERING	335
	GEO9080 – TRAFFIC FLOW AND TRAFFIC MANAGEMENT	338

	GEO9090 – OCEANOGRAPHY AND HYDROGRAPHY	341
	GEO9100 – EARLY WARNING SYSTEMS & NATURAL DISASTER MANAGEMENT	345
	GEO9110 – REFERENCE SYSTEMS AND TIME	349
	GEO9120 – COASTAL AREAS & MARINE SPATIAL PLANNING	352
	GEO9130 – SPATIAL DATA ADVANCED ANALYSIS METHODS	355
	GEO9140 – SPECIAL ISSUES ON REAL ESTATE VALUATION	358
	GEO9150 – INTELLIGENT TRANSPORT SYSTEMS	361
	GEO9160 – GROUNDWATER HYDRAULICS	364
	GEO9170 – ROAD SAFETY AND URBAN ROAD NETWORKS	367
	GEO9180 – PROJECT (CONSTRUCTION) MANAGEMENT	370
1(0 th Semester	373
	GEO1001 – DIPLOMA THESIS	374

1st Semester

GEO1010 – MATHEMATICAL ANALYSIS

COURSE OUTLINE: GEO1010 - MATHEMATICAL ANALYSIS

(1) GENERAL

SCHOOL	SCHOOL ENGINEERING.				
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			CS	
	ENGINEERIN	١G			
LEVEL OF STUDIES	Undergradua	ate			
COURSE CODE	GEO1010		SEMESTER	1 st	
COURSE TITLE	MATHEMAT	ICAL ANALYSIS	5		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	ponents of the course, e.g. lectures, s are awarded for the whole of the WEEKLY CREDITS		EDITS		
	Lectures 4 5				
	Total 4 5				
COURSE TYPE	General Background				
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:					
IS THE COURSE OFFERED TO ERASMUS STUDENTS					
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/GEO224/				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

This course includes all the basic concepts of calculus with the ultimate goal of applying them to problems that arise in the field of engineering and elsewhere. The first and largest part of the course is related to the calculus of functions of one variable and the second part is related to functions of two variables.

The aim of the course is to deepen the students' knowledge in the concepts of mathematical analysis and to familiarize them with its use as a means and tool for solving problems in the various thematic areas of the Engineer's specialty. During the course students will acquire the necessary supplies to better understand the theoretical part of the specialty courses of their curriculum.

The student after the successful completion of the course will be able to:

- Appropriately use concepts from Calculus in a mathematical / applied environment
- Implement, with a systematic approach, methods for solving basic mathematical problems from the field of engineering and technological sciences.
- Interpret the results she/he has reached
- Verify the results through critical thinking.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Exercise criticism and self-criticism
- Mathematical thinking and analysis
- Mathematical and analytical presentation of geometric concepts
- Search, analyze and synthesize data with the use of the necessary technology
- Autonomous work
- Production of free, creative and inductive thinking

(3) SYLLABUS

The course is designed for a set of 13 weeks of lectures. The topics that will be discussed are the following

- Set of real and complex numbers
 - The real number system. Mathematical Induction. The real line. Complex numbers and their properties. Polar representation of complex numbers.
- Real functions of one variable
 Basic Definitions, Algebraic Functions, Trigonometric Functions, Exponential Function
- Limit of a Function
 Existence and uniqueness of the limit. Algebraic properties of limits. One-sided limits.
 Limit of composite functions
- Continuity of functions

Definitions, Continuity of Elementary Functions, Intermediate Value Theorem, Existence of maximum and minimum of continuous functions in closed intervals, Monotonic functions, Continuous and 1-1 functions, Inverse functions, Logarithmic function

- Differential Calculus of Functions of one variable
 Definition, Differentiation Rules, Derivatives of Elementary Functions, Mean
 ValueTheorem, Derivative of a Function and Monotonicity, Derivative and Local
 Extremes, L'Hopital Rule, Curved Functions, Inflection Points,
- Sequences of real numbers
 Converging sequences. Monotonic sequences. Defining a sequence recursively Integrals
- Series of real numbers
 Series of sequences. Taylor Series.
- Integral Calculus of functions of one variable
 The fundamental theorem of calculus. Integration techniques (integration by factors, recursively, rational functions, variable change). Definite integral, Integral applications
- Functions of two variables
- Sequences in R², Limits of Functions of Two Variables, Partial Derivative, Taylor Theorem, Extremes of Functions of Two Variables, Double Integrals. Green's Theorem, Stokes Theorem and Gauss Theorem.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to Face		
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Utilization of E-class UNIWA platform (file exchange among professors and students) Email 		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	35%	
described in detail.	Study of solved exercises	15%	
The student's study hours for each learning	Exercises to be solved	10%	
activity are given as well as the hours of non- directed study according to the principles of the	Self - Study (bibliography)	40%	
ECTS	Course total	100%	
Description of the evaluation procedure	During the semester students will be given problems- exercises which together with the material of the lectures e_{o} will be an aid for the preparation of the final exams.		

(5) ATTACHED BIBLIOGRAPHY

- 1. Wrede, R., Spiegel, M.R. (2013) Schaum's Outline of Advanced Calculus, Mcgraw-Hill, 6th Edition
- 2. Trench W.F. (2013) Introduction to Real Analysis, Faculty Authored and Edited Books, Trinity University.
- 3. Thomas, G.B., Finney, R.L., Wier, M.D. (2002) Thomas' Calculus, Addison Wesley, 9th Edition
- 4. Spivak, M. (2019) The Hitchhiker's Guide to Calculus, Vol 57, American Mathematical Society
- 5. Halidias, N. (2021) Applied Mathematics for Economists and Engineers, Broken Hill. (in Greek)
- 6. Rassias, T. (2017) Mathematics I, Tsotras, 2nd Edition (in Greek).

GEO1020 – LINEAR ALGEBRA AND MATRIX ANALYSIS

COURSE OUTLINE: GEO1020 - LINEAR ALGEBRA AND MATRIX ANALYSIS

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING				
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			RMATICS	
	ENGINEERIN	IG			
LEVEL OF STUDIES	Undergradu	ate			
COURSE CODE	GEO1020		SEMESTER	1 st	
COURSE TITLE	Linear Algeb	ra and Matrix	analysis		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	ponents of the course, e.g. lectures, are awarded for the whole of the TEACHIN CREDI		CREDITS		
	4 5		5		
		Lectures			
	TOTAL 4 5				
COURSE TYPE	General back	ground			
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:					
IS THE COURSE OFFERED TO ERASMUS STUDENTS					
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/GEO235/				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The course aims to deepen students' knowledge in the topics of linear algebra, matrix theory, vector calculus, and to familiarize them with their use as means for solving problems in various engineering applications. The teaching process aims to provide students with the necessary background for a better understanding of the theoretical part of the specialty courses of their curriculum.

Upon successful completion of the course, students:

- Will have understood basic concepts of linear algebra and vector calculus,
- Will be able to use matrices and vector spaces in the mathematical modelling of engineering problems and draw related conclusions,
- Will be able to interrelate the geometric/mathematical principles taught within this course with the scope of surveying and geoinformatics engineering.
- Will be fully aware of how to apply the related methods in applications typically encountered by a Topography and Geoinformatics Engineer,

Will have a general comprehension of how to apply all of the above to other engineering fields.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Criticism and self-criticism
- Mathematical thinking and analysis
- Mathematical and analytical presentation of geometric concepts
- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Decision-making
- Working independently
- Production of free, creative and inductive thinking

(3) SYLLABUS

- Vector spaces, linear dependence/independence, basis and dimension, orthogonality,
- Vector calculus: the concept of free vector, collinear and coplanar vectors, coordinate systems, cartesian, polar, cylindrical and spherical coordinates. Unit vectors, inner, outer (cross) and mixed vector products. Geometric implications of vector products.
- Line in 3-d space: vector, analytic and parametric expressions. Distance of point from line.
- Plane in 3-d space: vector, analytic and parametric expressions. Distance of point from plane. Curves and surfaces.
- Linear algebra and matrices: Definition, categories, properties, and operations (addition, scalar multiplication, multiplication, transpose). Row-reduced echelon form. Gauss-Jordan algorithm.
- Determinants: Definition and properties. Solution of linear systems.
- Augmented matrix. Invertible matrix. Formula and Gauss-Jordan algorithm for inverse matrix computation. Cramer systems.
- Bilinear forms. Symmetric matrices and applications. Eigenvalues and eigenvectors. Diagonalization and applications.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY.	Face-to-face		
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Lectures: Use of Powerpoint presentations or PDF files. Utilization of E-class UNIWA platform (file exchange among professors and students) Email 		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	52	
described in detail.	Study of theory and	50	
The student's study hours for each learning	applications		
activity are given as well as the hours of non- directed study according to the principles of the	Exercises preparation	35	
ECTS	Course total	137	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Language of evaluation: Greek (English for ERASMUS students, if required) Methods of evaluation: • Written exam at the end of the semester		
	Evaluation criteria are known to the students before the final examination and the grades allotted to each exam question are indicated under each one. Students can see their corrected answers, their individual grade on each question, and receive comments on their mistakes.		

(5) ATTACHED BIBLIOGRAPHY

- Greek:

- 1. Donatos, G., & Adam, M. (2008). Linear algebra: Theory and applications, Gutenberg, Athens.
- 2. Chalidias, N. (2018). Infinitesimal calculus, linear algebra and applications. Broken Hill Publishers Ltd.
- 3. Mpratsos, Ath. (2015), Lectures in advanced mathematics, Hellenic Academic Ebooks "Kallipos", URI: <u>http://hdl.handle.net/11419/424</u>
- 4. Mpratsos, Ath. (2003), Advanced mathematics, Stamoulis, Athens.
- 5. Rassias, Th. (2017), Mathematics I (2nd Edition), Tsotras Editions.
- 6. Xenos, Th. (2004), Linear Algebra, Ziti Editions.
- 7. Strang, G. (2006), Introducton to Linear Algebra, Editions of University of Patras.
- 8. Strang, G. (2005), Linear Algebra and apllications, University Publications of Crete,

Herakleion.

- International:

- 1. Kreyszig, E. (2005), Advanced Engineering Mathematics, 9th edition, Wiley.
- 1. Glyn, J. et al. (2010), Advanced Modern Engineering Mathematics, 4th edition, Addison-Wesley Pub. Co.
- 2. Wylie, C.R. & Barrett, L.C. (1995), Advanced Engineering Mathematics, 6th edition, McGraw-Hill.
- 3. Zill, D.G. & Cullen, M.R. (2006), Advanced Engineering Mathematics, 3rd edition, Jones & Bartlett Pub.
- 4. Lipshutz, S. & Lipson, M. (2000), Linear Algebra, Schaum's Outline Series, 3rd edition.
- 5. Datta, B.N. (1995), Numerical Linear Algebra and Applications, Books/Cole Publishing Company.
- 6. Golub, G.H. (2002), Matrix Computations, John Hopkins University Press.
- 7. Meyer, C.D. (2000), Matrix Analysis and Applied Linear Algebra, SIAM. URL: <u>http://www.matrixanalysis.com/DownloadChapters.html</u>.
- 8. Shores, T.S. (2007), Applied Linear Algebra and Matrix Analysis, Springer Science. URL: http://www.math.unl.edu/~tshores1/linalgtext.html.

GEO1030 – INFORMATICS AND PROGRAMMING

COURSE OUTLINE: GEO1030 - INFORMATICS AND PROGRAMMING

(1) GENERAL

SCHOOL	ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			ORMATICS
	ENGINEERIN	G		
LEVEL OF STUDIES	Level 6			
COURSE CODE	GEO1030		SEMESTER	1 st
COURSE TITLE	INFORMATIO	CS AND PROGR	AMMING	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	onents of the course, e.g. lectures, are awarded for the whole of the WEEKLY CREDITS		CREDITS	
Lectures		2	3	
	Laboratory exercises 2 2			
	Total 4 5			
COURSE TYPE	General background			
PREREQUISITE COURSES:	-			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes			
COURSE WEBSITE (URL)	https://eclas	s.uniwa.gr/cou	rses/TOP151/	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

This course aims to provide students with:

- basic knowledge of information systems, computer networks and the internet
- the foundations of algorithmic thinking and problem-solving methodologies
- essential information of data storage and representation in modern computer systems
- an introduction to programming and software development

After completing this course students will be able to:

- efficiently use multiple digital tools and the internet
- use flowcharts ad an algorithm description procedure
- perform numeric conversion and represent numbers in different arithmetic systems
- develop basic applications in high level computer programming languages like

MATLAB

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

This course aims to develop the following competencies:

- Search, analysis and synthesis of data and information using appropriate technologies
- Promote creativity and inductive reasoning
- Independent thinking
- Team work

(3) SYLLABUS

Introduction to Computer Science. Historical review of computer systems. Computer architecture and involved technologies. Computer Networks and communication protocols. Hardware and Software. Flowcharts. Arithmetic Systems and numeric representations, conversions and operations. Introduction to programming using the MATLAB computer language. Design and analysis of computer programs. Data types. Variables. Operators and expressions. Data Input and Output. Flow control and conditional program execution. Logical expressions and complex structures for flow control. Iteration structures. Arrays. Basic Indexing. Introduction to functions. Software development using MATLAB. Program debugging. Problems and applications.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	exercises, etc.) are uploaded in the e-learning platform (e-class).		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	40	
	Laboratory practice	40	
The student's study hours for each learning	Study and analysis of	20	
activity are given as well as the hours of non- directed study according to the principles of the	bibliography		
ECTS	Essay writing	50	
	Course total	150	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	 I. Written final examination that includes: Short answer questions Problem solving II. Midterm written examinations III. Projects 		

(5) ATTACHED BIBLIOGRAPHY

In Greek

- 1. Kalatzis I., 2016. Algorithmic Programming using MATLAB. Sideris Publications
- 2. Mousas B. X., 2008. Basic Use & Programming with MATLAB. Ion Publications.

In English

- 3. Palm W., 2010. Introduction to MatLab for Engineers, McGraw-Hill.
- 4. Attaway S, 2016. Matlab: A Practical Introduction to Programming and Problem

Solving. Butterworth-Heinemann.

GEO1040 – FUNDAMENTALS OF GEODESY AND SURVEYING ENGINEERING

COURSE OUTLINE: GEO1040 - FUNDAMENTALS OF GEODESY AND SURVEYING ENGINEERING

(1) GENERAL

SCHOOL	ENGINEERING			
DEPARTMENT	SURVEYING AND GEOINFORMATICS ENGINEERING			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	GEO1040		SEMESTER	1 st
	FUNDAMENTALS	OF GEO	DESY AND SUR	VEYING
COURSE TITLE	ENGINEERING			
INDEPENDENT TEACHI in case the credits are awarded in discrete p Laboratory Exercises, etc. If the credits are awa enter the weekly teaching hours	e parts of the course e.g. Lectures, varded uniformly for the entire course,			
	L	ectures	3	3
Laboratory Exercises		Laboratory Exercises 2 2		
	TOTAL 5 5			
TYPE OF COURSE	E Copmpulsory			
PREREQUISITE COURSES:	None			
C.LAUSSA OF TEACHING AND EXAMINATIONS:				
THE COURSE IS OFFERED TO ERASMUS STUDENTS				
ONLINE COURSE PAGE(URL)	https://eclass.uniwa.gr/courses/TOP119/			

(2) LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course are described, the specific knowledge, skills and abilities of an appropriate level that students will acquire after the successful completion of the course.

After the end of the course, students will have acquired fundamental knowledge of Geodesy and Topography, as well as a general overview of the subjects of Surveying Engineering, while at the same time they will have become familiar with the basic field topographical work and measurements. The context of the course aims at understanding the theory and solving the practical issues that arise in the basic geodetic engineering tasks assigned to the students. Finally, it is expected that students will develop critical thinking about problems of basic work performed by the Surveying Engineer, and will be able to resolve them.

General Competencies

Taking into account the general skills that the graduate must have acquired (as these are listed in the Diploma Supplement and listed below) which / which of them is the subject of the course intended for?.

- Search, analysis and synthesis of data and information, using the necessary technologies.
- Autonomous work.
- Teamwork.
- Criticism and self-criticism.

(3) COURSE CONTENT

Lectures

History of Geodesy. Distinction between Geodesy and Topography; Introduction to Geodesy, definitions; shape, size and density of the Earth; Internal structure and structure of the Earth; internal-external forces; movements of the Earth; rotation around the earth, around the axis of the earth, movement of the pole; transition and congation. Tides. Gravitational field. Levels and coordinate systems. Spheroidal, ellipsoid; geographical coordinates of ellipsoids; geoids and altitude; convergence of verticals; the concept of 1st, 2nd and 3rd fundamental problems. Coordinate transformations: displacement, turning and changing of coordinate scale. Reference ellipsoids and geodetic datum. Projective systems; Greek projective systemsa EGSA and HATT. Changes in the level of the sea. Average sea level. Absolute and relative positions and their depiction.

Introduction to surveying. Types of measurements (distances, directions, angles, height differences), units of measurement. Geographical Polar and Cartesian coordinates; basic calculations; determinations of coordinates, direction and distances; errors of measurements, sources and types of errors, significant digits. Accuracy of measurements; transmission of errors. Equally and unequally weighted observations; topographic instruments, classical and modern methods of measurement, fieldwork; maps, diagrams, symbols, drawing methods; surface calculations (geometrical shapes, rectangular and polar co-arranged).

Laboratory Exercises

Laboratory exercises comprising of: basic topographical calculations (distances, angles of direction), compilation of coordinates (polar, cartesian), coordinate transformations(displacement, turning, scale), calculations of geometric sizes (distances, area) and estimation of their accuracy (transmission of errors), presentation and use of topographic measuring instruments and equipment.

DELIVERY Face to face USE OF INFORMATION AND Use of multimedia Lectures: (power point COMMUNICATION presentations, videos) TECHNOLOGIES Laboratory exercises: use of software (office Use of management software and specialized topographical TEIs in Teaching, Laboratory Education, software) Communication with students Communication: use of asynchronous e-learning platform(<u>http://eclass.survey.teiath.gr</u>) **TEACHING ORGANIZATION** Activity Semester Workload Lectures 80

(4) TEACHING AND LEARNING METHODS - EVALUATION

The way and methods of teaching are described in detail.	Study & analysis of bibliography	30
The student's study hours for each learning activity are listed, as well as the hours of a non- quided study according to the principles of ECTS	Group Laboratory Exercises	40
guided study according to the principles of ECTS	Total Course	150
STUDENT EVALUATION	Written exam (50%):	
Description of the evaluation process	Multiple choice questions, methodology developmen and problem solving	
Explicitly defined assessment criteria are mentioned and if and where they are accessible to students.	Laboratory Exercises (50%)	

(5) RECOMMENDED BIBLIOGRAPHY

Greek:

- 1. Agatza A. M., Balodimos D. D., 1988. Introduction to Geodesy. Student Notes of NTUA.
- 2. Vlachos D., 1987. Topography. Volume A. AUTh Publications.
- 3. <u>Evangelia</u> Lambrou, <u>Giorgos Pantazis</u>,2010. Applied Geodesy. Ziti Publications, 456 p.
- 4. Livieratos E., 1999. Theory of Geodesy. Ziti Publications, Thessaloniki.
- 5. A.G. Badelas A.G., P.D. Savvaidis, I.M. Yfantis, I.D. Doukas, 2010. Geodesy Volume I Geodetic measurements and calculations. Kyriakides Publishing House,544 p.
- 6. Tsoulis D., 2004. Introduction to Topography. Ziti Publications, Thessaloniki.

English:

- 1. Anderson J.M., Mikhail E.M., 1985. Introduction to Surveying. McGraw-Hill, New York.
- 2. Gomarasca M., 2009. Basics of Geomatics. Springer.
- 3. Irvine W., 1980. Surveying for Construction. 2nd Edition. McGraw-Hill, New York.
- 4. Mueller I. I., Ramsayer K. H., 1979. Introduction to Surveying. Frederick Ungar, New York.
- 5. Shank V., 2012. Surveying engineering & Instruments. White Word Publications.
- 6. Shepherd F. A., 1977. Engineering Surveying. Edward Arnold, London.

GEO1050 – TECHNICAL AND TOPOGRAPHIC DRAWING

COURSE OUTLINE: GEO1050 - TECHNICAL AND TOPOGRAPHIC DRAWING

(1) GENERAL

SCHOOL	SCHOOL OF	SCHOOL OF ENGINEERING		
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN	ENGINEERING		
LEVEL OF STUDIES	Undergradua	ate		
COURSE CODE	-		SEMESTER 1st	
COURSE TITLE	TECHNICAL	AND TOPOGRA	PHIC DRAWING	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	nents of the course re awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHING HOURS	CREDITS
	Lectures 2			
	2			
	Lab exercises			
	Total 4 5			
COURSE TYPE	General back	kground		
PREREQUISITE COURSES:	None			
	Preferred pr	erequisite knov	wledge: Euclidear	Geometry
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (Eng	ilish)		
COURSE WEBSITE (URL)	https://eclas	s.uniwa.gr/cou	irses/GEO178/	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

After the successful completions of the course, students acquire a set of knowledge and skills that allow them to:

- Understand and effectively use the notion of drawing scale and the conventions of technical drawing
- Implement the basic rules and conventions of drawing line-work and annotations
- Understand the geometric projection methods and their implementation to technical drawing
- Easily perceive the three-dimensional space and effectively produce architectural and construction drawings and topographic diagrams.
- Understand the relief representation methods using contour lines and their implementation in drawings
- Produce sections of the earth surface
- Have a basic understanding of the computer tools and applications used for the

implementation of the above and the production of digital drawings.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Working independently
- Project planning and management
- Creative and inductive thinking

(3) SYLLABUS

Theoretical part of the Course

- 1. Elements of drawing history. The contemporary use of drawing as an engineering communication language
- 2. Types of drawings and their basic features. Sketches. Maps and cartography.
- 3. Drawing scale
- 4. Drafting tools and materials. Standard drafting paper sizes. Line-work and annotation conventions, title blocks and legends.
- 5. Traditional drawing board methods and modern digital drafting environments.
- 6. Projection methods. Orthographic projection and its implementation to architectural and topographic drawing. Axonometric projection and its usual applications.
- 7. Basic land surveying techniques of measurements. Coordinates, topographic grid. Representing the measurements in drawings.
- 8. Contour lines and the relief representation of the ground surface. Calculating contour lines using the linear interpolation method.
- 9. Construction projects design. Ground sections and ground relief. Cross sections and longitudinal sections.
- 10. Types of topographic diagrams.

Lab Part of the Course

- Critical overview of Computer Aided Drafting (CAD) Software
- Practical exercises involving the use of CAD software appropriate for the production of topographic drawings
- Production of topographic diagrams and architectural drawings, with an emphasis in the aesthetics of the final outcome

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-Face		
USE OF INFORMATION	Utilization of e-class UNIV	-	
ANDCOMMUNICATIONS	 Specialized CAD software 	-	
TECHNOLOGY	Utilization of digital prese	entation methods in the	
Use of ICT in teaching, laboratory education, communication with students	lectures		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	26	
	Laboratory practice	26	
The student's study hours for each learning	Lab exercises (homework)	38	
activity are given as well as the hours of non- directed study according to the principles of the	Independent study	50	
ECTS	Course total	140	
STUDENT PERFORMANCE	Language of evaluation: Gre	eek	
Description of the evaluation procedure	Methods of evaluation:		
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.			
	Lab exercise exam u	sing CAD software (max 50%)	

(5) ATTACHED BIBLIOGRAPHY

- Hansjorg Frey, 1999, Σχέδιο κατασκευών. Τεχνικό Αρχιτεκτονικό Στατικό. Ευρωπαϊκές Τεχνολογικές Εκδόσεις
- 2. Κοφίτσας Ιωάννης Δ. Μαθήματα Τοπογραφικού Σχεδίου.
- Μαλικούτη Σταματίνα, 2011, Μεθοδολογία και Εφαρμογές Τεχνικού Σχεδίου. Σύγχρονη Εκδοτική.
- 4. Παυλίδης Ιορδάνης, 1996, Γραμμικό Σχέδιο, τ. 1. Εκδόσεις Ζήτη.
- 5. Ράκας Νικόλαος Χ., 2012, Τεχνικό Σχέδιο. Εκδόσεις Ζήτη.
- 6. Τζουβαδάκης Ιωάννης, 2007, 2D & 3D σχέδιο στο Autocad. Εκδόσεις Συμμετρία.
- 7. Κάππος Γιάννης, 2009, Δούλεψε με το Autocad 2009. Εκδόσεις Κλειδάριθμος

GEO1060 – INTRODUCTION TO ECONOMICS

COURSE OUTLINE: GEO1060 - INTRODUCTION TO ECONOMICS

(1) GENERAL

SCHOOL	SCHOOL OF	SCHOOL OF ENGINEERING		
ACADEMIC UNIT		DEPARTMENT OF SURVEYING AND GEOINFORMATICS ENGINEERING		
LEVEL OF STUDIES	Undergradua	ate		
COURSE CODE	GEO1060		SEMESTER 1 st	
COURSE TITLE	Introduction	to Economics		
INDEPENDENT TEACH if credits are awarded for separate compo- laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	nents of the course, e.g. lectures, re awarded for the whole of the		WEEKLY TEACHIN GHOURS	CREDITS
		Lectures	3	45
	Total 3 45			45
COURSE TYPE	General background			
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek (with the possibility of another language)			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes			
			https://eclass.uniwa.gr/courses/GEO198/	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

After the successful completion of the course, students are expected to:

- Know the basic concepts and principles of economics
- Understand the key indicators of economic growth and to be able to choose the most appropriate one
- Be aware of the relationship between the natural environment and economy
- Understand the content of rights in rem and the basic economic provisions of the Civil Code and tax legislation
- Be aware of potential partnerships (during the execution of projects and technical studies) and of the usual accounting obligations of engineers and be able to decide on relevant professional matters.
- Understand the current social and economic developments and be able to formulate well-founded arguments based on critical thinking
- Perceive the complexity of the institutions governing the Greek and the European economy

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- o Team work
- Working independently
- Working in an interdisciplinary environment
- Project planning and management
- Respect for the natural environment
- Criticism and self-criticism
- $_{\circ}$ $\,$ $\,$ Production of free, creative and inductive thinking

(3) SYLLABUS

- 1. Basic economic concepts. Analysis of different economic ideologies.
- 2. Markets, consumers and the economic problem. Demand and supply theories.
- 3. Economic sectors. Indicators
- 4. Growth vs development
- 5. Factors of production
- 6. Cost
- 7. Enterprises and companies
- 8. Macroeconomic approach: inputs and outputs, external trade, consumption, savings, investments, inflation etc.
- 9. Labour force. Unemployment.
- 10. Money and the financial system
- 11. International trade. Global market.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY.	Face to	face	
	0	 Face to face lectures and interactive teaching 	
		the classroom	
	0	Encouragement of st	udents to prepare the next
		course	
	0	Encouragement of st	udents to attend related
		workshops, conferen	ces etc.
USE OF INFORMATION	0	Utilization of E-class L	JNIWA platform (file
ANDCOMMUNICATIONS		exchange between pr	ofessors and students)
TECHNOLOGY	0	Web search (literatur	e review and data sources)
Use of ICT in teaching, laboratory education, communication with students	0	Email	
TEACHING METHODS		Activity	Semester workload
The manner and methods of teaching are described in detail.		Lectures	39
	Stu	idy and analysis of	81
The student's study hours for each learning		bibliography	81
activity are given as well as the hours of non- directed study according to the principles of the ECTS		Course total	100
STUDENT PERFORMANCE			
EVALUATION	-	age of evaluation: Gre	eek
Description of the evaluation procedure	Methods of evaluation:		
			d of the semester (multiple
Specifically-defined evaluation criteria are	ch	oice questionnaires, sł	nort-answer questions)
given, and if and where they are accessible to students.	o Ab	ility of conducting stu	dies

(5) ATTACHED BIBLIOGRAPHY

- Vavouras Ioannis, 'Economic Policy', Papazisis Publishers, 2013.
- o Dalamagas Vasilis, 'Introduction to public economics, Kritiki Publishing, 2010.
- Parkin, Michael, Melanie Powell & Kent Matthews, 'Econonomics, Kritiki Publishing, 2013.

GEO1070 – PHILOSOPHY OF SCIENCE

COURSE OUTLINE: GEO1070 - PHILOSOPHY OF SCIENCE

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING		
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS		
	ENGINEERING		
LEVEL OF STUDIES	Undergraduate		
COURSE CODE	GEO1070 SEMESTER	1	th
COURSE TITLE	PHILOSOPHY OF SCIENCE		
INDEPENDENT TEACHIN if credits are awarded for separate compo- laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	nents of the course, e.g. lectures, e awarded for the whole of the	WEEKLY TEACHING HOURS	CREDITS
	Lectures 3		
Add rows if necessary. The organisation of methods used are described in detail at (d).	0	3	5
COURSE TYPE			
PREREQUISITE COURSES:	No		
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek		
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)		
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/GEO1070/		

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

After the successful completion of the course, students will be able to:

- Know the basic concepts related to philosophy as well as science related technological achievements, being able to carry out relevant reviews
- know the historical course of the basic philosophical approaches and be aware of the relevant social and economic parameters
- understand the relationship of the natural environment with the relevant philosophical issues
- have established the connection of the examined issues with the profession of surveyor / geoinformatics engineer

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

After the successful completion of the course, students acquire the following knowledge and skills:

- Adapting to new situations
- Autonomous work
- Working in an interdisciplinary environment
- Respect for diversity and multiculturalism
- Respect for the natural environment and sustainability
- Criticism and self-criticism
- Production of free, creative and inductive thinking

(3) SYLLABUS

- 1. Introduction to philosophy, concepts and definitions
- 2. Science, technology, innovation and their recent achievements
- 3. Philosophy of science: political, sociological and other extensions
- 4. Common concepts: Spirit-Matter, Space-Time, Art-Technique
- 5. Logical Positivism. Scientific explanation and validation of scientific hypotheses.
- 6. Determinism and natural sciences
- 7. Space and time
- 8. Science and environmental protection
- 9. Contemporary issues: ethics, dignity, gender identity, minorities, democracy, etc.
- 10. Consequences / prospects for scientists (surveyors) engineers

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students			
TEACHING METHODS The manner and methods of teaching are described in detail. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the	Activity Lectures Study and preparation for the exams	Semester workload 52 (13 X 4) 38	
ECTS	Course total	150	

STUDENT PERFORMANCE EVALUATION	Language of evaluation: Greek
Description of the evaluation procedure	Written exam (100%)
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	

(5) ATTACHED BIBLIOGRAPHY

- 9. Αυγελής, Νίκος, Έισαγωγή στη Φιλοσοφία της Επιστήμης', Σταμούλης, 2010
- 10. Ρουσόπουλος, Γιώργο, 'Φιλοσοφία της Επιστήμης', Liberal Books, 2011.
- 11. Sismondo, Sergio, Έισαγωγή στις Σπουδές Επιστήμης και Τεχνολογίας'. Μετάφρ. Βαρβάρα Σπυροπούλου, επιμ.
- Μανώλης Πατηνιώτης, Liberal Books, 2016.

2nd Semester

GEO2010 – PROBABILITY THEORY AND STATISTICS

COURSE OUTLINE: GEO2010 - PROBABILITY THEORY AND STATISTICS

(1) GENERAL

SCHOOL ENGINEERING				
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN	IG		
LEVEL OF STUDIES	Undergradua	ate		
COURSE CODE	GEO2010		SEMESTER 2 nd	
COURSE TITLE	PROBABILIT	Y THEORY AND	STATISTICS	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	oonents of the course, e.g. lectures, are awarded for the whole of the WEEKLY CRED		CREDITS	
	Lectures 4 5			
	Total 4 5			
COURSE TYPE	General Bacl	kground		
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS				
COURSE WEBSITE (URL)	https://eclas	ss.uniwa.gr/cou	irses/GEO251/	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The student after the successful completion of the course will be able to:

- Understand the basic mathematical concepts of probability theory and statistics
- Connect the mathematical methodologies taught in the subject of their studies.
- Apply the acquired knowledge in the solution of problems in the field of the Engineer's specialty.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Mathematical thinking and analysis
- Search, analyze and synthesize data with the use of the necessary technology
- Adaptation to new situations
- Decision making
- Autonomous work and Teamwork
- Production of free, creative and inductive thinking

(3) SYLLABUS

The course is designed for a set of 13 weeks of lectures and is divided into two main parts. The topics that will be discussed are the following

- Probability
 - Introduction to probability theory basic concepts
 - Random variables
 - Expectation, variance, standard deviation, etc.
 - Probability distribution
 - Discrete and continuous distributions
- Statistics
 - Basic concepts: population, sample, frequencies, etc.
 - Descriptive statistics
 - Sampling distribution and normal distribution theory
 - Confidence intervals
 - Hypothesis testing
 - Linear regression and correlation

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to Face		
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Utilization of E-class UNIWA platform (file exchange among professors and students) Email 		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	35%	
The student's study hours for each learning			
activity are given as well as the hours of non-			

directed study according to the principles of the	Self - Study (bibliography)	40%
ECTS	Course total	100%
Description of the evaluation procedure	During the semester students will be given problem exercises which together with the material of the le will be an aid for the preparation of the final exams	
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.		

(5) ATTACHED BIBLIOGRAPHY

- 7. Schiller J., Srinivasan R. A., Spiegel, M.R. (2013) Schaum's Outline of Probability and Statistics, Mcgraw-Hill, 4th Edition
- 8. Georgiou, D. (2009) Probability and Statistics, Kleidarithmos
- 9. Milonas N. and Papadopoulos B. (2017) -Probability & Statistics for Engineers, Tziola Publications (in Greek)
- 10. Papageorgiou, E. and Halikias, M. (2020) Applied Statistics and Probability with SPSS & MATLAB, Broken Hill. (in Greek)

GEO2020 – PROGRAMMING TECHNIQUES AND ALGORITHMS

COURSE OUTLINE: GEO2020 - PROGRAMMING TECHNIQUES AND ALGORITHMS

(1) GENERAL

SCHOOL	ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN	G		
LEVEL OF STUDIES	Level 6			
COURSE CODE	GEO2020		SEMESTER	2 nd
COURSE TITLE	PROGRAMM	IING TECHNIQU	JES AND ALGOR	RITHMS
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	ents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHIN GHOURS	CREDITS
	Lectures 2 3			3
	Laboratory exercises 2 2			
	Total 4 5			
COURSE TYPE	General bac	kground		
PREREQUISITE COURSES:	-			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes			
COURSE WEBSITE (URL)	https://eclas	s.uniwa.gr/cou	rses/GEO249/	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The objectives of this course are:

- introduction to advanced programming techniques
- demonstration of methods and techniques for effective data management, analysis and visualization
- development of integrated applications and user interfaces
- understanding the structure of algorithms and their complexity
- algorithm design methodologies based on different algorithmic approaches

Upon successful completion of the course the student will be able to:

- design and implement software applications that process and / or visualize data
- processes complex structures and data sources
- select the most appropriate problem depending technique (e.g. sorting or searching)
- evaluate algorithmic solutions by estimating their complexity and identifying the factors that affect the performance of the algorithm
- develop modern applications utilizing the capabilities of software environment

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search, analysis and synthesis of data and information, using the appropriate technologies
- Promotion of creative and inductive thinking
- Autonomous work
- Team work

(3) SYLLABUS

Functions. Scope and visibility of functions. Recursive functions. Functions and tables. Vectors, Tables, arrays and operations. Strings and text manipulation. Advanced indexing techniques. Design and analysis of algorithms. Complexity. Sorting and searching techniques. Algorithmic performance comparison. Basic data structures and representation. File manipulation of binary and text files. Graphics and visualization techniques in two and three dimensions. User interfaces. Applications in Topography and Geoinformatics.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
	Course material (presentations, lecture notes, exercises, etc.) are uploaded in e-learning platform (e-class).		
	e-mail and e-class announcer		
Use of ICT in teaching, laboratory education, communication with students	communication with the stuc	lents.	
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	40	
	Laboratory practice	40	
The student's study hours for each learning	Study and analysis of	20	
activity are given as well as the hours of non- directed study according to the principles of the	bibliography		
	Essay writing	50	
	Course total 150		
STUDENT PERFORMANCE	I. Written final examination t	that includes:	
EVALUATION	- Short answer questions		
Description of the evaluation procedure	- Problem solving		
	II. Midterm written examinat	tions	
Specifically-defined evaluation criteria are	III. Projects		
given, and if and where they are accessible to students.			
students.	The examination material an		
	are announced to the studer	-	
	lectures and are also posted	on the course's website.	

(5) ATTACHED BIBLIOGRAPHY

In Greek

- 1. Charles F. Van Loan & K-Y Daisy Fan, 2012. Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία, Εκδόσεις DaVinci. In greek
- 2. Χατζίκος Ε., 2016. Matlab για επιστήμονες και μηχανικούς, Εκδόσεις Τζιόλα.

In English

- 3. Gilat A., 2008. Matlab: An Introduction with Applications, John Wiley.
- 4. Moore H., 2017. MATLAB for Engineers, Pearson.

GEO2030 – DIFFERENTIAL EQUATIONS

COURSE OUTLINE: GEO2030 - DIFFERENTIAL EQUATIONS

(1) GENERAL

SCHOOL ENGINEERING				
ACADEMIC UNIT				
	ENGINEERING			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	GEO2030 SEMESTER 2 nd			
COURSE TITLE	COURSE TITLE DIFFERENTIAL EQUATIONS			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			WEEKLY TEACHIN GHOURS	CREDITS
Lectures			4	5
Total			4	5
COURSE TYPE	General Background			
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (in English)			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/GEO247/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The aim of the course is to understand how differential equations are used in modeling problems that arise in the specialty of Engineer and how to solve these equations. The student after the successful completion of the course will be able to:

- Understand the basic mathematical concepts and the methodology of solving first order and higher order differential equations, systems of differential equations, as well as the use of Fourier series.
- Use differential equations in modeling problems of their specialty, solve them and draw conclusions.
- Connect the mathematical methodologies taught and apply the acquired knowledge in the subject of Surveying and Geoinformatics Engineer.
- Apply all of the above in other fields of the Engineer's specialty.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Exercise criticism and self-criticism
- Mathematical thinking and analysis
- Mathematical and analytical presentation of geometric concepts
- Search, analyze and synthesize data with the use of the necessary technology
- Autonomous work
- Production of free, creative and inductive thinking

(3) SYLLABUS

The course is designed for a set of 13 weeks of lectures. The topics that will be discussed are the following

- Basic concepts solution of differential equation (partial and general), initial and boundary value problems.
- First order differential equations

classification and methods of solving, divisible variables, linear differential equations, homogeneous differential equations, exact differential equations, integrating factors, Bernoulli differential equation, Ricatti differential equation, applications in problems of the Engineer's specialty.

 Linear higher order linear differential equations with constant or variable coefficients definitions, the Wronskian, methods of solution, homogeneous solution, general solution of the linear differential equation, the method of undetermined coefficients, variation of parameters. Euler's equations. Initial value problems and applications in engineering and electricity.

 Solution of differential equations using power series ordinary points and singular points, existence of analytical solutions, solution to regular singular points.

- \circ $\;$ Systems of linear differential equations, matrix method.
- Laplace transforms definition and properties, solution of linear differential equations and systems of differential equations with constant coefficients with the Laplace transform. reduction of a differential equation in a first order system of equation.
- Bessel equations and Legendre equations, Gamma functions, Dirac delta function.
- Differential equations with partial derivatives, linear, boundary value problems, Separable equations. Applications in engineering.
- Fourier series, Dirichlet type conditions, Parseval identity. Applications of the Fourier series.
- Complex Functions and their applications.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY.	Face to Face		
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Utilization of E-class UNIWA platform (file exchange among professors and students) Email 		
TEACHING METHODS	Activity Semester workload		
The manner and methods of teaching are described in detail.	Lectures	35%	
described in detail.	Study of solved exercises	15%	
The student's study hours for each learning	Exercises to be solved	10%	
activity are given as well as the hours of non- directed study according to the principles of the	Self - Study (bibliography)	40%	
ECTS	Course total	100%	
Description of the evaluation procedure			

(5) ATTACHED BIBLIOGRAPHY

- 11. Boyce W.E., Diprima R.C. and Meade D.B. (2017) Elementary Differential Equations and Boundary Value Problems, 11th edn, Wiley.
- 12. Trench W.F. (2013) Elementary Differential Equations with Boundary Value Problems, Faculty Authored and Edited Books, Trinity University.
- 13. Goodwine B., 2011, Engineering Differential Equations, Springer.
- 14. Kalbaugh David V., 2017, Differential Equations for Engineers: The Essentials, CRC Press.
- 15. Kreyszig E., 2005, Advanced Engineering Mathematics, 9th edition, Wiley.
- 16. Glyn, J. et al., 2010, Advanced Modern Engineering Mathematics, 4th edition, Addison-Wesley Pub. Co.
- 17. Wylie C.R. and Barrett L.C., 1995, Advanced Engineering Mathematics, 6th edition, McGraw-Hill.
- 18. Zill D.G. and Cullen M.R., 2006, Advanced Engineering Mathematics, 3rd edition, Jones & Bartlett Pub.
- 19. Halidias, N. (2021) Applied Mathematics for Economists and Engineers, Broken Hill. (in Greek)
- 20. Rassias, T. (2017) Mathematics II, Tsotras, 2nd Edition (in Greek).

GEO2040 – SURVEYING INSTRUMENTS AND MEASURING METHODS

COURSE OUTLINE: GEO2040 - SURVEYING INSTRUMENTS AND MEASURING METHODS

(1) GENERAL

SCHOOL	ENGINEERIN	ENGINEERING		
ACADEMIC UNIT	SURVEYING AND GEOINFORMATICS ENGINEERING			
LEVEL OF STUDIES	UNDERGRAD	UATE		
COURSE CODE	GEO2040		SEMESTER 2 nd	
COURSE TITLE	SURVEYING	INSTRUMENTS	SAND MEASURIN	G METHODS
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	nents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHIN GHOURS	CREDITS
		LECTURES	2	3
	LABORATORY EXCRCISES 3 2			2
	TOTAL 5 5			5
COURSE TYPE	special back <u>o</u>	ground		
PREREQUISITE COURSES:	students hav	e obtained the Fundamentals	is recommended e fundamental kno of Geodesy and S	owledge of
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES (ENGLISH	4)		
COURSE WEBSITE (URL)	https://eclas	s.uniwa.gr/cou	urses/TOP128/	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The aim of this course is to give a deep understanding of the fundamental principles of conducting surveying measurements (angles, distances, height differences). This includes the operation principles, the usage and the processing of the collected observations. The students learn how to select the appropriate instrument / measurement technique in order to fulfill the requirements of each work.

Upon successful completion of the course students will be able to:

- understand the operation principles of the basic surveying instruments
- understand the errors that affect the surveying measurements (instrumental/environmental errors) as well as the techniques used to mitigate these errors
- use surveying instruments (theodolites, tachymeters, total stations, mechanical and digital levels)
- select the appropriate instrument / measurement technique for fulfilling the requirements of each work

process the collected observations, estimate and judge their precision.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Working independently
- Team work
- Production of new research ideas

(3) SYLLABUS

Theoretical part:

- Instruments and methods for measuring angles and directions: Basic parts and use of theodolites. Plate and circular levels. Optical and electronic reading devices. Magnification, field of view and resolving power of the telescope. Accuracy and classification of theodolites. Instrumental errors: axial errors, circle eccentricity, circle graduation errors. Inspection and calibration: horizontal collimation and vertical indexing. Techniques for angle measurements. Centering devices: optical plumb, forced centering. Assessment of precision of angle measurements.
- Instruments and methods for distance measurements. The stadia method. Basic principles of electronic distance measurement: modulation, demodulation, refraction, refractive index, laser. Corrections: prism constant, atmospheric corrections.
- Total stations. Basic parts and use of total stations.
- Instruments and methods for height measurements. Basic parts and use of levels. Earth curvature and atmospheric refraction corrections. Classification of levels. Pendulum compensators. Line-of-sight error. Rod errors. Measuring procedures, line leveling, double-run leveling.

Laboratory part:

Tachymeter-theodolite: setting up, centering and levelling up, sighting, circle reading, measuring horizontal and vertical angles. Reduction of observations. Tacheometric observations.

Level: levelling up, sighting, reading the staff, use of digital levels and bar-coded staffs. Conduction of differential levelling, double run levelling and reduction of observations. Total stations: setting up, measuring angles and distances, setting atmospheric parameters for EDM, setting prism constant. Field survey, plotting coordinates, creation of topographic map.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
USE OF INFORMATION	Use of ICT in teaching (PowerPoint presentations)		
ANDCOMMUNICATIONS	• Use of an asynchronous e-l	earning platform (e-class).	
TECHNOLOGY	• Use of e-mail		
Use of ICT in teaching, laboratory education, communication with students	 Use of the Excel software in 	n laboratory.	
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	26	
described in detail.	study and analysis of	26	
The student's study hours for each learning	bibliography		
activity are given as well as the hours of non- directed study according to the principles of the	laboratory practice	38	
ECTS	Laboratory preparation and	60	
	essay writing		
	Course total	150	
STUDENT PERFORMANCE	Assessment language: Greek	(English for ERASMUS	
EVALUATION	students upon request)		
Description of the evaluation procedure			
	Performance evaluation met		
aiven and it and where they are accessible to	-	of the final grade) of graded	
students.		 ended questions and solving 	
	simple problems.		
	-	vork (10% of the final grade)	
	-	; up and use of surveying	
	instruments (theodolites, tot	al stations, levels).	
		ve been presented to the	
	students before the final ex	amination. Students can see	
	students before the final ex	•	

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography (in Greek):

- 1. Βλάχος Δ., 1987. Τοπογραφία. Τόμος Α. Εκδόσεις ΑΠΘ.
- 2. Καλτσίκης Χ., Φωτίου Α., 1999. Γενική τοπογραφία. Εκδόσεις Ζήτη, Θεσσαλονίκη.
- 3. Ρωσσικόπουλος Δ., 2006. Μέτρον Γεωμετρικόν. Εκδόσεις Ζήτη, Θεσσαλονίκη.
- 4. Τσούλης Δ., 2004. Εισαγωγή στην Τοπογραφία. Εκδόσεις Ζήτη, Θεσσαλονίκη.

- Suggested bibliography (in English):

1. Allan A.L., Hollwey J.R., Maynes J.H.B., Amin A., 1980. Practical Field Surveying and Computa-tions. Heinmann, Portsmouth, NH.

2. Bannister A., Raymond S., Baker R., 1998. Surveying. 7th edition. Prentice Hall, New Jersey.

3. Burnside D., 1991. Electronic Distance Measurement. 3rd edition, BSP Professional Books, UK.

4. Cooper M. A. R., 1982. Modern Theodolites and Levels, 2nd edition, Granada Publishing.5. Deumlich F., 1982. Surveying Instruments. Walter de Gruyter, Berlin.

6. Fialovszky L., 1991. Surveying Instruments and their Operational Principles. Elsevier, New York.

7. Rüger J. M., 1996. Electronic Distance Measurement – An Introduction. 4th edition, Springer Ver-lag, Berlin

8. Saastamoinen J.J., 1967. Surveyor's Guide to Electromagnetic Distance Measurement. University of Toronto Press.

GEO2050 – ANALYTICAL GEOMETRY

COURSE OUTLINE: GEO2050 – ANALYTICAL GEOMETRY

(1) GENERAL INFORMATION

<u> </u>					
SCHOOL	School of Engi	School of Engineering			
ACADEMIC UNIT	Department of	Department of Surveying and Geoinformatics Engineering			
LEVEL OF STUDIES	Undergraduate	е			
COURSE CODE	GEO2050	SEMESTER		2 nd	
COURSE TITLE	ANALYTICAL G	EOMETRY			
INDEPENDENT TEA if credits are awarded for separate cou laboratory exercises, etc. If the credi course, give the weekly teachin	mponents of the course, e.g. lectures, its are awarded for the whole of the			CREDITS	
		Lectures	4(3/1)	5	
		Total	4	5	
COURSE TYPE	General backg	round			
PREREQUISITE COURSES:					
LANGUAGE OF	Greek				
INSTRUCTION AND					
EXAMINATIONS:					
IS THE COURSE OFFERED TO	Offered (English)				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/modules/auth/opencourses.php?fc=75				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The main goal of the course is to have the student acquainted with the geometrical properties of the two- and three-dimensional space. A combined synthetic-analytical method, with geometric views of three-dimensional objects as the primary instructional tool is employed.

Once the course is completed, the student will..

- have understood elementary notions of analytic geometry in two-dimensional and three-dimensional space, which, along with the courses of linear algebra and calculus, form a solid theoretical backbone in engineering
- have a deeper understanding of three-dimensional space, as a primary component in every professional and scientific subfield in modern topography
- have learned about basic projection methods (top view, front view, axonometric, perspective) in the light of the underlying geometric-algebraic theory that is used for computer-aided (CAD) visualization
- be able to solve basic problems in 3D space geometry
- be able to solve linear coordinate transformations (scale, translation, rotation, rigid, affine, projective)

 Be in a solid position to implement the acquired knowledge in the context of subsequent department courses, as well as solve complex problems concerning representations of three- dimensional objects as well as their projections in twodimensional space.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Working independently
- Production of free, creative and inductive thinking

(3) SYLLABUS

Geometry for the topographical engineer: Elements of Euclidean geometry. Vectorial algebra. Coordinate reference systems. Point. Line. Curve. Plane. Surface. Study of relations between objects: Point to Plane, polygon, plane. Relation of line to a plane. Slope/direction of line. Directional cosines. Parallel lines and planes, orthogonal lines and planes, collinearity, coplanarity. Equivalent analytic expressions. Conics. Second degree surfaces. Applications to topography.

Linear transforms. Scale. Translation. Rotation. Rigid-body transformation. Similarity transformation. Affine and Projective transformations. Parameters. Properties. Non-linear transformations. Applications to geomatics. Generalities concerning projections. Central projection. Parallel projection. Methods of visualization. Top-view. Front-view. Axonometry. Perspective. Vision and central projection. Photography fundamentals. Vanishing points and lines. Introduction to projective geometry. 3D computerized visualization. Introduction to computer graphics and CAD.

DELIVERY	Face-to-face			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Web search (literature review and data sources) Utilization of E-class UNIWA platform (file exchange among professors and students) Email Specialized software and libraries (both commercial and open source) for the manipulation and editing of numerical and geospatial data Source code editors Office software (word, presentations, spreadsheets editors)			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are	Lectures	39		
described in detail. The student's study hours for each learning activity are given as well as the	Laboratory practice13Exercise preparation40			
hours of non-directed study according to the				
principles of the ECTS.	Study of theory 58			
	Course Total	150		

(4) TEACHING AND LEARNING METHODS - EVALUATION

STUDENT PERFORMANCE EVALUATION	Language of evaluation: Greek
Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	 Methods of evaluation: Written exam at the end of the semester (multiple choice questionnaires, short-answer questions, & problem-solving questions) Homework (practical exercises on both theoretical and practical objectives related to the course)

(5) RECOMMENDED LITERATURE

In Greek:

1. Γεωργίου Δ., Ηλιάδης Σ., 2017, "Αναλυτική Γεωμετρία".

2. Ξένος Θ., 2004, "Αναλυτική Γεωμετρία".

3. Λευκαδίτης Γ., 2006. "Μέθοδοι Παραστάσεων".

In English:

3. Kindle J. H., 1968. *Theory and problems of plane and solid analytic geometry*. McGraw-Hill, New York.

GEO2060 – PHYSICS I (MECHANICS)

COURSE OUTLINE: GEO2060 - PHYSICS I (MECHANICS)

(1) GENERAL

SCHOOL	ENGINEERIN	G			
ACADEMIC UNIT	SURVEYING A	SURVEYING AND GEOINFORMATICS ENGINEERING			
LEVEL OF STUDIES	UNDERGRAD	DUATE			
COURSE CODE	GEO2060		SEMESTER	2 nd	
COURSE TITLE	PHYSICS I (N	IECHANICS)			
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	nents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKI TEACH GHOUI	IN	CREDITS
		LECTURES	3		3
	LABORATORY EXCRCISES				2
	TOTAL 5 5			5	
COURSE TYPE	general back	ground			
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES (ENGLISH)				
COURSE WEBSITE (URL)	https://eclas	s.uniwa.gr/co	urses/GEO1	87/	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The aim of this course is to give a deep understanding of the fundamental principles of mechanics, including kinematics, Newton's laws, energy conservation, momentum and angular momentum conservation, the dynamics of rotational motion, central forces, oscillations, wave and fluid mechanics.

Upon successful completion of the course students will be able to:

- demonstrate a deep understanding of the theoretical foundations of classical Newtonian mechanics,
- interpret and critically evaluate the fundamental laws they must apply to deal with problems of classical mechanics,
- solve basic engineering problems through force analysis and application of appropriate laws and basic conservation principles,
- take laboratory measurements of physical quantities and explain the experimental results by connecting them with theory,
- collaborate with their fellow students for the preparation of an experimental project,
- apply the relevant laws to solve complex problems using the appropriate

mathematical tools,

- evaluate the conditions under which the use of the theory of relativity is necessary,
- interpret the results of their calculations in relation to the subject of Surveying and the science of Geoinformatics.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Criticism and self-criticism
- Search for, analysis and synthesis of data and information,
- with the use of the necessary technology
- Adapting to new situations
- Working independently
- Team work
- Production of new research ideas

(3) SYLLABUS

Theoretical part:

- Classical mechanics (fundamental principles, forces and vectors, diagram design, units of measurement).
- Kinematics in one dimension (displacement, time, average and instantaneous velocity and acceleration, motion with constant or variable acceleration, relative velocity, circular motion, velocity and position by integration).
- Kinematics in two and three dimensions (vectors of position, velocity, acceleration, independence of motion, circular motion, relative velocity).
- Newton's laws (forces and interactions, force diagram, inertial and non-inertial frames, central forces, gravitational force).
- Applications of Newton's laws (body in equilibrium, particle dynamics, friction, circular motion dynamics).
- Work and kinetic energy, work and energy of variable force, power. Conservative and non-conservative forces, forces and potential energy, gravitational potential energy, conservation of mechanical energy.
- Momentum, impulse, collisions (impulse-momentum theorem, conservation of momentum, collisions, center of mass).
- Rigid body rotation (angular velocity, angular acceleration, rotational kinetic energy, moment of inertia).
- Dynamics of rotational motion (torque, angular momentum, work and power in rotational motion, principle of conservation of angular momentum).
- Equilibrium and elasticity (equilibrium conditions, stress, strain, elastic modulus).
- Periodic motion (study of simple harmonic oscillation through the solution of the 2nd order differential equation, damped and forced oscillations, resonance).
- Fluid mechanics (hydrostatic pressure, continuity equation, Bernoulli's equation).

- Waves (harmonic mechanical waves, standing waves, normal modes, wave interference, sound waves, intensity, attenuation).
- Limits of Newtonian mechanics, introduction to special and general theory of relativity.

Laboratory part:

Measurements - errors, graphs, measurement of lengths and radii of curvature, measurement of gravitational acceleration, calculation of spring constant, rigid body study, speed of sound measurement, calculation of solids and liquids density, coefficient of viscosity, determination of linear thermal expansion coefficient.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
	Use of ICT in teaching (PowerPoint presentations και PDF)		
COMMUNICATIONS TECHNOLOGY	 Use of an asynchronous e-l 	earning platform (e-class).	
Use of ICT in teaching, laboratory education, communication with students	 Use of e-mail 		
	 Use of simulations for demains 	•	
	phenomena and experiments		
	 Use of the Excel software in 	· · · · · · · · · · · · · · · · · · ·	
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.		39	
	study and analysis of	30	
The student's study hours for each learning activity are given as well as the hours of non-	bibliography		
directed study according to the principles of the	laboratory practice	26	
ECTS	,, ,	55	
	essay writing		
	Course total	150	
	Assessment language: Greek	(English for ERASMUS	
EVALUATION Description of the evaluation procedure	students upon request)		
	Performance evaluation met		
students	-	of the final grade) of graded	
		de short-answer questions,	
	problems.	solving simple and complex	
		vork (40% of the final grade)	
		k, essay/report of laboratory	
	measurements and oral		
	measurements.	examination during the	
	l The evaluation criteria ha	ve been presented to the	
		amination. Students can see	
		t and receive clarifications on	
	their grades.		

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

1. Young Hugh D, Freedman R, 2016, University Physics with Modern Physics, Pearson Education Ltd.

2. Halliday David, Resnick Robert, Walker Jearl, 2014 Fundamentals of Physics, John Wiley and Sons Inc.

3. Raymond A. Serway, John W. Jewett, 2012, Physics for Scientists and Engineers, CENGAGE Learning

- Related academic journals:

1. Nature, Macmillan Publishers Limited

2. Physical Review Letters, American Physical Society

Journal of Physics A,B,C,D, Institute of Physics
 European Journal of Physics, Institute of Physics

3rd Semester

GEO3010 – THEORY OF ERRORS & ADJUSTMENT OF OBSERVATIONS I

COURSE OUTLINE: GEO3010 - THEORY OF ERRORS & ADJUSTMENT OF OBSERVATIONS I

(1) GENERAL

SCHOOL	ENGINEERING			
ACADEMIC UNIT	DEPT. OF SURVEYING & GEONIFORMATICS ENGINEERING			
LEVEL OF STUDIES	Graduate –	Graduate – Level 6		
COURSE CODE	GEO3010		SEMESTE R	3 th
COURSE TITLE	Theory of E	rrors & Adjustm	nent of Obse	rvations I
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are awar the weekly teaching hours ar	nents of the course, e.g. lectures, arded for the whole of the course, give TEACHING CREDITS			G CREDITS
	Leo	tures and Labs	4(3/1)	5
		TOTAL	4	5
COURSE TYPE	Special Back	ground		
PREREQUISITE COURSES				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
OFFERED TO ERASMUS STUDENTS	No			
COURSE WEBSITE (URL)	https://eclas =75	s.uniwa.gr/mod	ules/auth/op	encourses.php?fc

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Main purpose of the course is the introduction to the theory of errors and of parameter estimation, and the familiarization with the processes of the adjustment of observations with the method of Least Squares.

After completing the course, the students:

• will have understood the basic principles of parameter estimation from multiple measurements of equal or unequal precision, the concept of error propagation as well as the search, by means of strict mathematical criteria, of optimal solutions which minimize the effect of observation errors;

• will know the concepts of precision, accuracy and reliability;

• will be in position to apply methods of statistical processing of equally and unequally weighted measurements and to handle, with the least squares method, simple linear and non-linear adjustment problems in the context of the activities of the surveying and geomatics engineer;

• will be capable of applying the acquired knowledge in the context of several other courses and exercises in our Department, but also for solving both basic and complex problems which involve computations based on actual measurements which inevitably contain errors.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, using the necessary technology
- Working independently
- Production of free, creative and inductive thinking
- Decision-making
- Working in an interdisciplinary environment

(3) SYLLABUS

Error theory and its relation to other scientific topics. Areas of application of error theory in the fields of surveying and geoinformation.

Measurements and errors. Error types. Element of probability theory and statistics. Random variables and observation errors. One-dimensional random variables. Estimation from multiple measurements.

Probability distributions for discrete and continuous random variables. The "normal" distribution. Confidence intervals.

Observations of equal and unequal weight. Internal and external accuracy, reliability. Muti-dimensional random variables. Muti-dimensional normal distribution. Error ellipse and error ellipsoid. Propagation of variances-covariances.

Parameter estimation and adjustment of observations. Method of observation equations. Least squares method for linear functions. Least squares method for non-linear functions. Examples of solved adjustments.

DELIVERY	Face-to-face		
USE OF INFORMATION ANDCOMMUNICATIONS	- Support by the electronic asynchronous course platform		
TECHNOLOGY Use of ICT in teaching, laboratory education,	eclass.		
communication with students	- Use of electronic material a	as teaching aid (ppt slides).	
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	39	
	Laboratory / Exercises	13	
The student's study hours for each learning	Preparation of Exercises	45	
activity are given as well as the hours of non- directed study according to the principles of the	Non-directed study	53	
ECTS	Course total	150	
STUDENT PERFORMANCE	Language of evaluation: Gre	ek	
EVALUATION			
Description of the evaluation procedure	Methods of Evaluation:		
Specifically-defined evaluation criteria are	Written examination in the	e end of the semester (70%),	
given, and if and where they are accessible to students.	which combines open-ended questions and numeric calculations.		
	• Evaluation of performance	in the exercises (30%)	

(4) TEACHING and LEARNING METHODS - EVALUATION

(5) SUGGESTED BIBLIOGRAPHY

1. Agatza-Balodimou A.M., 2018. *The Method of Least Squares and Applications*. Tziola Editions, Athens (in Greek).

2. Darmanis A., 1997. *Adjustment of Observations and Estimation Theory*. Vols. I & II. Ziti Editions, Thessaloniki (in Greek)

GEO3020 – CONSTRUCTION SURVEYING

COURSE OUTLINE: GEO3020 - CONSTRUCTION SURVEYING

(1) GENERAL

SCHOOL	ENGINEERIN	G		
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN	G		
LEVEL OF STUDIES	Graduate – L	evel 6		
COURSE CODE	GEO3020		SEMESTER 3 ^t	h
COURSE TITLE	CONSTRUCT	TION SURVEYIN	IG	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	nents of the course, e.g. lectures, re awarded for the whole of the		WEEKLY TEACHIN GHOURS	CREDITS
	Lectures and Labs 4(2/2) 5			5
	TOTAL 4 5			
COURSE TYPE	Special background			
PREREQUISITE COURSES:	Surveying In:	struments & M	easuring Metho	ods
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Can be taught in English			
COURSE WEBSITE (URL)	UNIWA Oper	n eClass AПO	ΓΥΠΩΣΕΙΣ - ΧΑΡ	ΑΞΕΙΣ

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Horizontal network densification. Sections. Intersection, resection, accuracy achievements. Traverses: instrument selection, measurements, corrections, reductions. Traverse evaluation, accuracy achievements. Vertical control network establishment and densification. Spirit leveling. Accurate leveling measurements. Errors and accuracy achievement during spirit leveling measurements. Trigonometric leveling. Error budget, accuracy control. Earth curvature effect, atmospheric refraction influence. Trigonometric leveling applications. Methods of surveying. Tachometry. Surveying procedures. Control points establishment (horizontal and vertical control networks), basics of topographic maps. Basics of vertical alignments and cross-sections. Field measurements and calculations. Basics on construction engineering, instruments. Control networks. Absolute and internal accuracy of a technical work. Characteristic points establishment. Basic alignments. Staking out points, angles and curves. Calculation of arc and curve elements. Angle and length correction during stake-out.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Working independently
- Teamwork
- Adapting to new situations
- Criticism and self-criticism

(3) SYLLABUS

- horizontal and vertical network densification,
- surveying methods,
- alignments,
- stake-out points, angles and curves

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face			
USE OF INFORMATION	- Support by the electronic asynchronous course			
ANDCOMMUNICATIONS	platform	-		
TECHNOLOGY	eclass (exchange of informa	ation and digital data		
Use of ICT in teaching, laboratory education,	between			
communication with students	tutors and students)			
	- Use of software			
	- Use of programming enviro	onment for preparing		
	projects.			
	- Use of Surveying software for Lab exercises.			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	26		
	Laboratory / Exercises	26		
The student's study hours for each learning	Project	58		
activity are given as well as the hours of non- directed study according to the principles of the	Non-directed study	40		
ECTS	Course total	150		
STUDENT PERFORMANCE EVALUATION	Language of evaluation: Gre	ek or English		
Description of the evaluation procedure	Methods of evaluation:			
	Final exam (50%) which includes open- ended questions			
Specifically-defined evaluation criteria are given, and if and where they are accessible to	and problem solving			
students.	Laboratory work (50%)			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

Allan A.L., Hollwey J.R., Maynes J.H.B., Amin A., 1980. Practical Field Surveying and Computations. Heinmann, Portsmouth,

NH. Anderson J. M., Mikhail E. M., 1985. Introduction to Surveying. McGraw-Hill, New York.

Blachut T., Chrzanowski A., Saastamoinen J., 1979. Urban Surveying and Mapping. Springer, Berlin. Bomford G., 1980. Geodesy. 4 th edition, Clarendon Press, Oxford.

Irvine W., 1995. Surveying for Construction. 2nd edition, McGraw-Hill, New York.

Uren J., Price W. F., 2005. Surveying for Engineers. 4th edition, MacMillan Press, London. - **Related academic journals:**

Journal of Surveying Engineering. American Society of Civil Engineers

GEO3030 – PHYSICS II (ELECTROMAGNETISM & OPTICS)

COURSE OUTLINE: GEO3030 - PHYSICS II (ELECTROMAGNETISM & OPTICS)

(1) GENERAL

SCHOOL		<u>с</u>		
	ENGINEERING			
ACADEMIC UNIT	SURVEYING /	SURVEYING AND GEOINFORMATICS ENGINEERING		
LEVEL OF STUDIES	UNDERGRAD	UATE		
COURSE CODE	GEO3030 SEMESTER 3 th			
COURSE TITLE	PHYSICS II (E	LECTROMAGN	IETISM & OPTICS)
INDEPENDENT TEACHI	NG ACTIVITIE	S	WEEKLY	
if credits are awarded for separate compor	-		TEACHIN	CREDITS
laboratory exercises, etc. If the credits are	,	,		CREDITS
course, give the weekly teaching ho	ours and the total o	credits	GHOURS	
LECTURES			3	3
LABORATORY EXCRCISES		1	1	
TOTAL		4	4	
COURSE TYPE	general background			
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and	GREEK			
EXAMINATIONS:				
IS THE COURSE OFFERED TO	YES (ENGLISH)			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/TOP176/			
			<u></u>	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Upon successful completion of the course students will be able to:

- demonstrate a deep understanding of the theoretical foundations of electromagnetism,
- interpret and critically evaluate the fundamental laws they must apply to deal with complex problems of electromagnetism and geometrical optics,
- take laboratory measurements of physical quantities and explain the experimental results by connecting them with theory,
- apply the relevant laws to solve complex problems using the appropriate mathematical tools, discuss the applications of electromagnetism and optics in various scientific areas and collaborate with their fellow students for the preparation of an experimental project,
- interpret the results of their calculations in relation to the subject of Surveying and the science of Geoinformatics.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Criticism and self-criticism
- Search for, analysis and synthesis of data and information,
- with the use of the necessary technology
- Adapting to new situations
- Working independently
- Team work
- Production of new research ideas

(3) SYLLABUS

Theoretical part:

- Electrostatics, Coulomb's law, electric field, electric dipoles, Gauss's law, potential, calculation of electrical potentials, electrostatic fields in matter. Electric field energy, capacitance and capacitors, polarization and dielectric materials. Electric current, resistance and DC circuits, Kirchhoff's rules, electrical measurement instruments.
- Magnetostatics, magnetic field and forces, magnetic flux, motion of charged particles in a magnetic field, magnetic dipoles and magnetic dipole moment. Biot-Savart Law, calculation of magnetic fields. Ampere's law, paramagnetic, diamagnetic and ferromagnetic materials.
- Electromagnetic induction, Faraday's law, induced electric fields. Mutual induction, self-inductance, magnetic field energy, R-L, L-C and L-R-C circuits. Alternating current (AC), phasors, power in AC, resonance.
- Maxwell's equations in differential and integral form. Time-varying E/M field, electromagnetic waves, wave equation, energy and momentum of electromagnetic waves, Poynting vector, radiation pressure.
- Nature and propagation of light, reflection and refraction laws.
- Introduction to geometric optics: prisms, mirrors, lenses, simple optical instruments (eye, camera, telescope).
- Introduction to wave optics, interference, diffraction. Scattering and polarization of light. Instrument resolution. Light sources and detectors. Introduction to interferometry.

Laboratory part:

Measurements - errors, graphs, capacitor charging, electrical resistivity measurement of conductors, effect of a magnetic field on an electron beam, refraction of a laser light beam on transparent material, optical prism refraction, spectroscope calibration, focal length measurement of a lens, oscilloscope measurements.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face

USE OF INFORMATION	Use of ICT in teaching (Power	rPoint presentations και PDF)	
ANDCOMMUNICATIONS	• Use of an asynchronous e-learning platform (e-class).		
	• Use of e-mail		
Use of ICT in teaching, laboratory education,	• Use of simulations for demonstration of natural		
communication with students	phenomena and experiments	5.	
	• Use of the Excel software in	n laboratory.	
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	39	
	study and analysis of	30	
The student's study hours for each learning	bibliography		
activity are given as well as the hours of non- directed study according to the principles of the	laboratory practice	13	
ECTS	Laboratory preparation and	38	
	essay writing		
	Course total	120	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students.			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

1. Young Hugh D, Freedman R, 2016, University Physics with Modern Physics (volume B), Pearson Education Ltd.

2. Halliday David, Resnick Robert, Walker Jearl, 2014, Fundamentals of Physics (volume B), John Wiley and Sons Inc.

3. Raymond A. Serway, John W. Jewett, 2012, Physics for Scientists and Engineers, CENGAGE Learning

- Related academic journals:

- 1. Nature, Macmillan Publishers Limited
- 2. Physical Review Letters, American Physical Society
- 3. Journal of Physics A,B,C,D, Institute of Physics
- 4. European Journal of Physics, Institute of Physics

GEO3040 – NUMERICAL METHODS

COURSE OUTLINE: GEO3040 - NUMERICAL METHODS

(1) GENERAL

SCHOOL	ENGINEERIN	G		
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN	G		
LEVEL OF STUDIES	Level 6			
COURSE CODE	GEO3040		SEMESTER 3 th	l
COURSE TITLE	NUMERICAL	METHODS		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	re awarded for the whole of the WEEKLY CREDITS			CREDITS
Lectures 2 2			2	
Laboratory exercises 2 2			2	
	Total 4 4			4
COURSE TYPE	Special back	ground		
PREREQUISITE COURSES:	-			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes			
COURSE WEBSITE (URL)	https://eclas	<u>s.uniwa.gr/cou</u>	rses/TOP154/	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The objectives of this course are:

- introduction to numerical methods and their applications in engineering problems
- providing knowledge and skills necessary for the development of computational algorithms and applications in order to solve related problems

Upon successful completion of the course the student will be able to:

- recognize practical applications and problems of engineering science, whose solution depends on using numerical methods
- apply various methodologies of numerical analysis in order to solve fundamental mathematical problems for engineers
- use the basic principles of programming, algorithmic structures and techniques for the implementation of applications based on numerical methods and , in general, applications that solve engineering problems

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search, analysis and synthesis of data and information, using the appropriate technologies
- Individual work
- Team work
- Work in an interdisciplinary environment
- Promotion of creative and inductive thinking

(3) SYLLABUS

Basic concepts. Numerical accuracy and error propagation. Matrices and determinants. Vector and matrix norms. Solving non-linear equations. Bisection method. Regula-falsi method. Newton-Raphson method. Secant method. Convergence to solutions. Multiple

roots and modified Newton-Raphson method. Systems of linear equations. Stability of linear systems. Gaussian elimination. Factorization methods. Jacobi and Gauss-Seidel iterative methods. Convergence. Polynomial approaches to interpolation. Taylor polynomials. Lagrange and Newton interpolation. Interpolation and approximation with partial polynomials. Least squares method. Numerical integration. Trapezoidal and Simpson's rule., Romberg and Gaussian quadrature rule, Numerical solutions of differential equations. Euler's and Runge-Kutta methods. Error analysis. Implementation of numerical methods and application development in the Matlab programming environment.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	exercises, etc.) are uploaded in the e-learning platform (e-class).		
TEACHING	Activity	Semester workload	
METHODS	Lectures	30	
The manner and methods of teaching are described in detail.	Laboratory practice	30	
	Study and analysis of	20	
The student's study hours for each learning activity are given as well as the hours of non-	bibliography		
directed study according to the principles of the	Essay writing	40	
ECTS	Course total	120	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Course total120I. Written final examination that includes: - Short answer questions - Problem solving II. Midterm written examinations III. ProjectsThe examination material and the evaluation process are announced to the students during the lectures and are also posted on the course's website.		

(5) ATTACHED BIBLIOGRAPHY

In Greek

- 1.Σαρρής Ι., Καρακασίδης Θ., 2015. Αριθμητικές Μέθοδοι και Εφαρμογές για Μηχανικούς. Εκδόσεις Τζιόλα.
- 2.Στεφανίδης Γ. Χ., Σαμαράς Ν.Ε., 1999. Υπολογιστικές Μέθοδοι με το Matlab. Εκδόσεις Ζυγός.
- 3. Chapra S., Canale R., 2016. Αριθμητικές Μέθοδοι για Μηχανικούς. Εκδόσεις Τζιόλα.

In English

4. Yang W., 2005. Applied Numerical Methods Using MATLAB. Wiley-Interscience..

GEO3050 – GENERAL AND MATHEMAICAL CARTOGRAPHY

COURSE OUTLINE: GEO3050 - GENERAL AND MATHEMAICAL CARTOGRAPHY

(1) GENERAL

SCHOOL	School of Eng	Tingering		
	School of Engineering Surveying and Geoinformation Engineering			
	, .		tion Engineering	
LEVEL OF STUDIES	Undergradua	ite – Level 6		
COURSE CODE	GEO3050 SEMESTER 3th			
COURSE TITLE	GENERAL AN	ID MATHEMAI	CAL CARTOGRAP	ΗY
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	onents of the course, e.g. lectures, are awarded for the whole of the TEACHING CREDITS			CREDITS
Theory 2 3			3	
Laboratories Exercises 2 1			1	
Total 4 4			4	
COURSE TYPE	YPE Background, mandatory			
PREREQUISITE COURSES:	There are no prerequisite courses.			
LANGUAGE OF INSTRUCTION and	Greek - English (for ERASMUS students) - French			
EXAMINATIONS:	(for ERASMUS students)			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES (in English and French language)			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/TOP105/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

LEARNING

A) Learning the general and specific concepts / knowledge and techniques of the science and art of cartography (in the fields of General, Topographic, Nautical and Aeronautical cartography) and the corresponding maps.

B) Learning the components of a cartographic product and understanding their organizational structure.

SKILLS

A) Application of cartographic concepts eg. scales, grids, memos, etc. in the creation of cartographic products.

B) Acquisition of skills for 1) creation, 2) evaluation, 3) selection and 4) use of maps (with emphasis on topographic and nautical maps).

ABILITIES

A) Development of skills for the analysis, use and construction of new cartographic structures from different eg data and processes, depending on the constraints of reality.

In more detail, the objectives are defined as follows:

A) Learning the general and specific concepts / knowledge of the science and art of cartography

(in the fields of General, Mathematical, Topographic, Nautical and Aeronautical cartography) and the corresponding maps.

B) Acquisition of skills and abilities for 1) creation, 2) evaluation, 3) selection and 4) use of maps (with emphasis on topographic and nautical maps).

C) Distinguish the components of a cartographic product and understand their organizational structure. Development of possibilities for construction of a new structure from different eg Data and procedures, depending on the constraints of reality.

D) Application of cartographic concepts eg projections or scales in the creation of cartographic products.

E) Understanding the basic mathematical applications in cartography related to the representation of the Earth in two-dimensional space (plane) with the aim of understanding the basic concepts of the cartographic projections, the application of geometric and mathematical transformations, and concepts, methods and techniques of cartometry.
 F) Correlation of cartography with arts and sciences

The course combines the theoretical knowledge required to understand the above objects with the perception of their practical application.

The knowledge and skills acquired by the students in the course are the necessary supplies required for the correct understanding of fundamental geometric / mathematical concepts related to the operation and utilization of maps, while substantially enhancing their background in one of the fundamentals. (Cartography) of the science of the Engineer of Topography and Geoinformatics.

Based on the modules designed to support the subject matter of the course, basic theoretical and practical elements are consolidated which are related to:

a. the basic principles of cartography and graphic representations

b. the map display-projection systems

c. the basic geometric, cartographic and mathematical transformations

d. the methods of cartometry

e. familiarity with the use of topographic, nautical and aeronautical maps

f. the connection of cartography with other arts and sciences.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Taking into consideration the general skills that the graduate must have acquired, the course aims to:

1) understand the cartographic representation, through the passage from the Earth to the twodimensional surface of the map and the graphic semiology / representation of phenomena, objects and places.

2) search, analysis and synthesis of data and information, using the necessary technologies for the creation of maps and cartographic information.

3) understanding all the concepts and techniques of paper mapping and their application in practice

4) adapt new situations, which requires the creation of maps in a very short period of time (eg in case of natural disasters), or the use of new types of maps;

data (eg very high resolution satellite imagery) or the use of new techniques and equipment (eg unmanned aircraft and vehicles).

5) make decisions regarding the correct choice of data, technical, basic graphics and aesthetic features that compose the quality of a map.

6) autonomous work through the theoretical development and practical elaboration of issues related to cartographic concepts and practices, with the aim of developing skills necessary for cartographic studies.

7) In group work aimed at the theoretical development and practical elaboration of issues related to cartographic concepts and practices in order to develop skills necessary for cartographic studies in a team environment where collaboration is necessary.

8) the ability to work in an international environment supported by learning such "standardized knowledge" of cartography taught in most universities.

parts of the world, as well as by using and learning English and French "cartographic" terminology.

9) work in an interdisciplinary environment supported by the nature of the cartography course that is directly related to road construction, plumbing, environmental protection, etc.

10) the production of new research ideas (although the course is in a short semester (3rd)) that is supported and developed through a) individual and group work but also b) with information about the research programs of the Department in relation to cartography and the possibilities of students' participation in them.

11) the design and management of cartographic projects.

12) the demonstration of social, professional and moral responsibility in matters of copyright data and software.

13) the exercise of criticism and self-criticism through the presentation day of the semester papers (individual and group).

14) the promotion of free, creative and inductive thinking.

(3) SYLLABUS

Theoretical part - Lectures

Introduction, Basic Concepts, Principles, Definitions. Terminology and "terminology". Interconnected and overlapping scientific fields, sciences and techniques. Bibliographic resources - Online resources - "Open" Courses in the field of cartography and related fields -Free data. Organizations, scientific and professional associations and organizations related to cartography, its applications and cartographic data.

Historical data. History of cartography.

Topographic Map - Basic Concepts of Graphic Semiology - Topographic Cartography - Symbols - Colors. Cartographic Toponymy - Alphanumeric Cartographic Semiology - Toponyms in Topographic Maps. Toponyms legend. Categorizations and Types of Maps. Rules of Cartographic Presentation and Composition of Topographic Maps. Cartographic Generalization. Conception, Design, Compilation, Construction, Update and Review of Topographic Maps. Basic principles of creation a "correct" map. Printing and Production of Topographic Maps. Manufacturers / Producers of Maps and Cartographic Data in Greece and Abroad. Categorizations and Types of Maps. Uses of Topographic Maps - Cartometry -Distances in a Map. Other Maps and their Uses. Map and Decision Making. Map and Propaganda. Cartography for Special Categories of Users and Purposes. Cartography and Arts - Media - Advertising. Cartography Research. Topographic Map, Basic Concepts - Accuracy, correctness and reliability of topographic maps. Rendering and cartographic representation of the terrain, rendering and shading techniques of the terrain. Contour lines and terrain. Standards / standardization in the construction of maps. Examples of Greek and foreign maps. Critical presentation and analysis. Pocket maps. Ways to fold maps. Cartographic errors and omissions. Cartography for Special Categories of Users and Purposes. Cartography and cinema. Copyright and legal issues in cartographic production.

The creation of a map. From reality to the map. Mathematics for cartographers. Theoretical and Mathematical Cartography - Cartographic Data. Reference Plane. Coordinate systems in level and space. Coordinate conversions. Coordinate transformations. Two dimensional Helmert transformations (4 parameters). (Shift Transform Turning Transform. Scale Transform). Two dimensional Affine transformation (6 parameters). Basic applications of transformations in cartograph. Sphere Reference. Spherical coordinates. Geographic coordinates. Spherical trigonometry.

Arc length. Loxodrome and orthodrome. Ellipsoid. Coordinate systems in ellipsoid. Radius of curvature. Arc length in ellipsoid. Coordinate systems in the ellipsoid. Theory of cartographic distortions.

Distortions of angles, distances and areas. Scales of linear distortions. Scales of area distortions. Ellipse of distortions. Tissot Theorem.

Basic concepts, types and characteristics of cartographic projections.

Developable surfaces (cylinder, cone & plane).

Classification of cartographic projections. Azimuth projections. Cylindrical projections. Conical projections. Planispheres.

Applications of cartographic representations-projections. Use, select, change of projection. Geodetic reference systems. Coordinate transformations.

Ellipsoid transformations and geodetic reference system transformations.

Ellipsoid, projections, geodetic reference system and coordinate transformations in Greece.

Maps of military geographic service coverage system in various scales. Other geodetic systems of other map producers in Greece. Map Accuracy. Basic Concepts of Charts and their Use. Coordinate systems in the Greek charts and basic concepts of navigation. Aeronautical maps. Basic concepts of navigation and navigation in aeronautical maps. Cartometry. Methods of cartometry. Tools, methods in cartometry. Coordinates calculation. Distance Classification. Maps and distance problem. Length / distance measurements. Slopes calculation. Area calculations (in reality and on the map) Volume calculations. Visibility studies. Spatial analysis studies using topographic maps. Basic applications of cartometry in cartography. Map and compass (orientation, navigation techniques, navigation). Map and GPS (combined use).

Laboratory Part - Practice Exercises

Consolidation and practical application of the concepts of cartography (as they are mentioned in the theoretical part): coordinate systems, transformations and coordinate transformations, projections, ellipses, projections and reference systems in Greece. Exercise in recognizing the basic and aesthetic characteristics of a map. Practical understanding of the importance of toponyms and their depiction techniques. Exercise in the illustration of the terrain. Composition of topographic map elements. Analysis of cartographic generalization in topographic maps. Map analysis. Cartometry applications. Basic use of map (topographic, chart). Use of compass, parallel and map. Special issues.

Implementation and automation of calculations and cartographic representations (calculation of distortion scales, implementation of cartographic projections, applications of geometric transformations & applications of mapping methods). Bibliographic search and critical composition work (in the theoretical and practical context of the course). Combined use of compass, map and GPS. Applications of transformations and mathematical applications in cartography.Positioning,, navigation and air navigation with charts and aeronautical maps.

DELIVERY	Face to face.		
	Use of the Eclass platform (training materials, exercises		
	data, software, notes, etc.)		
	Distance learning through the Eclass platform, Microsoft		
	Teams, etc. (training materials, exercises, data, software,		
	notes, etc.)		
	 Internet use (search for bibliographic information and 		
	geospatial data sources)		
	• Use of the "e-class" platform of UniWA (exchange of		
	course data and digital data between teachers and		
	students)		
	• Use of e-mail		
	 Use of specialized software tools and libraries 		
	(commercial and open source) for the management and		
	processing of numerical and geospatial data		
	 Use of office software (copywriters, presentation 		

(4) TEACHING and LEARNING METHODS - EVALUATION

	software, spreadsheets)		
	Slides, use of softwares, software, video, use of internet, smart phones, Tablet, GPS / GIS		
communication with students			
TEACHING METHODS The manner and methods of teaching are	Activity	Semester workload	
described in detail.	Lectures	13 X 2 = 26 hours	
	Seminars (by invited	5 hours preparation of	
The student's study hours for each learning activity are given as well as the hours of non-	speakers)	questions by groups	
directed study according to the principles of the	Laboratory Exercises / Field	2 X 13 = 26 hours + 26	
ECTS	Exercises	preparation = 52 hours of	
		teaching+preparation	
	Interactive teaching	3 hours of preparation	
	Training visits 5 hours	5 hours	
	Elaboration of a group study ⁷ hours (project)		
	Preparation of an individual study	5 hours (preparation)	
	Educational presentation of the works	5 hours	
	Course preparation / weekly study	26 hours	
	Course total	134 hours	
STUDENT PERFORMANCE	Language of assessment:		
EVALUATION	Greek or English or French ((for ERASMUS students)		
Description of the evaluation procedure	Evaluation methods:		
Specifically-defined evaluation criteria are given, and if and where they are accessible to	0070		
students.	 Laboratory Exercises / Field Exercises: 20% Personal study and presentation: 20% 		

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Gretchen N. Peterson , 2012, Cartographer's toolkit Colours, typography , patterns, PetersonGIS, San Bernardino CA, USA.
- Elements of Cartography (6th Edition). 1995. With A. Robinson, J. Morrison, P. Muehrke, A. Kimmerling & S. Guptill. New York: Wiley.
- Sandra Lach Arlinghaus , Joseph J. Kerski ,2014, Spatial mathematics-Theory and practice through mapping , Taylor & Francis Group Boca Raton, FL, US.
- •

- Related academic journals:

- The Cartographic Journal, The World of Mapping- Published on behalf of The British Cartographic Society (BCS) Print ISSN: 0008-7041, Online ISSN: 1743-2774, Journal Impact Factor: 0.424, http://www.maneyonline.com/loi/caj
- Cartographica (On line Journal)- published by the Canadian Cartographic Association

- http://www.utpjournals.com/Cartographica.html
- Cartography and Geographic Information Science published by Taylor & Francis http://www.tandfonline.com/toc/tcag20/current#.U6Fe4dKKBMw
- Cartography & Surveying- published by Maney Publishing
 <u>http://maneypublishing.com/index.php/feature-of-the-month-carto-survey</u>

- Useful Links

http://www.geography.wisc.edu/histcart/

GEO3060 – Descriptive and Perspective Geometry

COURSE OUTLINE: GEO3060 - DESCRIPTIVE AND PERSPECTIVE GEOMETRY

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING			
DEPARTMENT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
LEVEL OF COURSE	UNDERGRADUATE			
COURSE CODE	GEO2120		SEMESTER OF	3 th
			STUDIES	
COURSE TITLE	DESCRIPTIVE	AND PI	ERSPECTIVE GEO	METRY
INDEPENDENT TEACH	ING ACTIVITIES		WEEKLY	
if credits are awarded for separate co	omponents of the cours	se, e.g.	TEACHIN	CREDITS
lectures,laboratory exercises, etc. If th		-	GHOURS	
whole of the course, give the weekly tea	-			
	Lectures & se	eminars	2	
Laboratory exercises			2	
Total 4 4			4	
COURSE TYPE	Field of Science			
PREREQUISITE	Typically, there are not prerequisite courses.			
COURSES:	Essentially, the students should possess knowledge of			
	3D Euclidian Geometry			
TEACHING AND				
ASSESSMENT	Greek			
LANGUAGE:	Gleek			
THE COURSE IS OFFERED	NO			
TO ERASMUS STUDENTS				
COURSE WEBPAGE	https://eclass.uniwa.gr/modules/auth/opencourses.php?fc			
(URL)	=75			

(2) LEARNING OUTCOMES

Learning outcomes

At the end of the course the students are expected to be in position to design and draw representations of 3D objects by applying scientifically based methods of representation, that are nowadays used by engineers, and not by simply applying practical methods. In this way the students will be able:

- 1. To cover adequately the needs of representation of any object on their field of interest.
- 2. To understand the relationship between a 3D object and its representations on a plane.
- 3. To realize the methods of creation of any image that appear on a computer screen when CAD programs are used.
- 4. To understand the geometrical relations in space of the object as well as

5. The geometrical relations between 3D and 2D representation of the objects.

General Abilities

By the end of the course the student would be able to analyze and compose given information.

To enrich his or her inductive reasoning

To adjust in new situations

To work autonomously and in groups

(3) COURSE CONTENT

An overview of the course can be summarized as follows:

A. GENERALLY ABOUT PROJECTIONS

- 1. Central Projection
- 2. Parallel Projection
- 3. Orthogonal Projection
- B. METHODS OF REPRESENTATIONS
- 1. Representation on two planes (Method of Gaspard Monge)
- 2. Perspective with one, two or three vanishing points
- C. APPLICATIONS OF THE METHODS
- 1. Polyhedrons are represented using the above methods.
- 2. Representation of geometrical objects with the methods of representation.
- 3. Transformation of the representation of an object to another means of representation
- 4. Sections of solids and surfaces
- 5. Developments

6. Applications of methods of representation on real problems that occur on practicing the profession of Architects.

(4) TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD	Lectures.		
USE OF INFORMATION AND	e-class		
COMMUNICATION	during lectures 3d animated videos	are presented.	
TECHNOLOGIES	Also special in-house software is introduced		
TEACHING ORGANIZATION	Activity	Semester	
	Activity	Workload	
	Lectures	26	
	Homework 24		
	Total number of hours for the 50 hours (total		
	Course student work-		
		load)	
	1. Through quick and simple exercises with bonuses		
STUDENT ASSESSEMENT	given during the lecture.		
	2. Weekly assignments		
	3. Final exams (theory and laboratory)		

(5) RECOMMENDED LITERATURE

In Greek

- 1. «Descriptive Geometry», George E. Lefkaditis George M. Exarchacos
- 2. «Descriptive Geometry», Markatis Stylianos
- 3. «Descriptive Geometry», Georgiou Dimitris

GEO3070 – PHYSICAL GEOGRAPHY & ENVIRONMENTAL MANAGEMENT

COURSE OUTLINE: GEO3070 - PHYSICAL GEOGRAPHY & ENVIRONMENTAL MANAGEMENT

(1) GENERAL

SCHOOL	ENGINEERI	NG		
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERI	NG		
LEVEL OF STUDIES	Level 6			
COURSE CODE	GEO3070		SEMESTE R	3rd
COURSE TITLE	PHYSICAL C		ENVIRONMEN	TAL
INDEPENDENT TEACHIN if credits are awarded for separate compon- laboratory exercises, etc. If the credits are course, give the weekly teaching how	nents of the course, e.g. lectures, re awarded for the whole of the TE			CREDITS
	Lectures 3 3			
	Laboratory exercises 1 1			
	Total 4 4			
COURSE TYPE	Special back	ground		
PREREQUISITE COURSES:	-			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	yes			
COURSE WEBSITE (URL)	https://eclas ?fc=75	s.uniwa.gr/mo	dules/auth/op	encourses.php

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

After completing the course, the students will be able to:

- recognize the basic properties of the natural environment and their relation to environmental problems
- understand the main environmental problems and the factors contributing to them in a global context and in Greece
- understand the human environment interaction
- have knowledge of the measures to resolve environmental problems
- have knowledge of the institutions, legislation and international conventions for environmental management in an international context, with special emphasis to European and Greek environmental legislation
- have knowledge of the Environmental Impact Assessment (EIA) process and recognize the environmental impact of proposed projects

• participate in multidisciplinary EIA teams

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Working independently or team work
- Respect for the natural environment

(3) SYLLABUS

- 1. Environmental problems in a global context and in Greece
- 2. Environmental data sources
- 3. Atmosphere -air pollution mitigation measures for air pollution
- 4. Elements of meteorology Climate change, international conventions for climate change
- 5. Elements of hydrology water adequacy and quality -water pollution water resources management, wastewater treatment facilities
- 6. Soil composition, formation and classification soil degradation, waste management
- 7. Fossil fuel and the depletion of energy resources, energy efficiency, renewable energy sources
- 8. Ecosystems and protected areas (wetlands, forests, European network of protected areas NATURA 2000)
- 9. Legislation-Environmental Impact assessment
- 10. European environmental policy

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
USE OF INFORMATION	Powerpoint for presentation	ons, the course website (e-	
ANDCOMMUNICATIONS	class) for uploading cours	se material and students'	
TECHNOLOGY	assignments. Statistical an	alysis software as well as	
Use of ICT in teaching, laboratory education, communication with students	Geographic Information Sys	tems software are used for	
	teaching and carrying out ex	vercises and projects.	
TEACHING	Activity Semester workload		
METHODS	Lectures	52	
The manner and methods of teaching are described in detail.	Laboratory practice	33	
	Study and analysis of	40	
The student's study hours for each learning activity are given as well as the hours of non-	bibliography		
directed study according to the principles of the ECTS	Course total	125	
STUDENT PERFORMANCE	Language of evaluation: Gr	eek	
EVALUATION			
Description of the evaluation procedure	Methods of evaluation:		
Specifically-defined evaluation criteria are	e Final exam (70%) which includes open- ended		
given, and if and where they are accessible to			
students.	Laboratory work (30%)		

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

In Greek:

- 1. Vavizos G., Bendali Fr. and Veriopoulos G. 2008. Manual of natural environment research, Papassotiriou, Athens.
- 2. Vouvalidis K. 2011. Physical Geography, Disigma publishing, Thessaloniki.
- 3. Georgopoulos A., Nikolaou K., Dimitriou, A. Gavrilakis C. and Blionis G. 2014. Earth: a small and fragile planet, Gutenberg, Athens.
- 4. Themelarou S., Panetsos L., Panetsos S. 2009. Environment, Tziolas publishing, Thessaloniki.
- 5. Tyler Miller G. and Spoolman S. E.2018. Environmental Science 15th edition, Tziolas publications, Thessaloniki.
- 6. Wright, R.T. and Boorse, D.F. 2013. Environmental Science. Toward A Sustainable Future, 11th Edition, Parissianou publishing, Athens.

In English:

- 1. De Blij H. J., Muller P. O., Burt J.E. and Mason J. A. 2013. Physical Geography: The Global Environment, Oxford University Press.
- 2. Strahler A.H., 2013. Introducing Physical Geography, 6th edition, John Wiley.
- 3. Glasson J., Therivel R. and Chadwick A. 2005. Introduction to Environmental Impact Assessment, 3rd Edition, Routledge.
- 4. Holden J. 2017. An Introduction to Physical Geography and the Environment, 4th Edition Pearson, Harlow, England.
- 5. Lemmens M. 2011. Geo-information: Technologies, Applications and the Environment,

Springer

6. Russo M. 2008. Environmental Management: Readings and Cases, 2nd Edition, Sage Publications.

- Related academic journals:

- 1. Journal of Environmental Management, Elsevier
- 2. Environmental Management, Springer

4th Semester

GEO4010 – PHOTOGRAMMETRY I (Introduction to Photogrammetry)

COURSE OUTLINE: GEO4010 – PHOTOGRAMMETRY I (Introduction to Photogrammetry)

(1) GENERAL

SCHOOL	ENGINEERIN	ENGINEERING			
ACADEMIC UNIT	DEPT. OF SU	DEPT. OF SURVEYING & GEONIFORMATICS ENGINEERING			
LEVEL OF STUDIES	Graduate –	Level 6			
COURSE CODE	GEO4010		SEMESTE R	4 th	
COURSE TITLE	GEO401 Pho Photogramn	otogrammetry netry)	l (Introductio	n to	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are awar the weekly teaching hours ar	HING ACTIVITIES WEEKLY ponents of the course, e.g. lectures, varded for the whole of the course, give TEACHING CREDI			CREDITS	
	Lectures and Labs 4(2/2) 5			5	
		TOTAL	4		5
COURSE TYPE	Special Background				
PREREQUISITE COURSES	No prerequisite courses. However, it is suggested to be taken after completion of courses Analytic Geometry, Linear Algebra & Matrices, Error Theory & Adjustment of Observations I, Programming Techniques & Algorithms.				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
OFFERED TO ERASMUS STUDENTS	Can be taught in English				
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/modules/auth/opencourses.php?fc =75				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The course has a double purpose. First, the students should learn the basic task of a photogrammetric process and to become familiar with the whole range of current applications of Photogrammetry, its importance for engineering projects and its synergy with other methods for collection and processing of 3D information. Second, they should comprehend the basic concepts and the fundamental problems of photogrammetry, fully grasp the geometry of the image and its distortions, understand the geometry of the stereopair, learn to assess the expected accuracy of the outcome of a photogrammetric procedure and, finally, be able to apply this knowledge in practical exercises implementing and evaluating certain metric image-based applications. Thus, this course is at the same time then necessary background for the next two compulsory photogrammetric courses. After completing the course, the students:

• Have fully understood the specific character of the scientific-technological field of

photogrammetry and its connection to other data collection techniques used by the surveying and geomatics engineer (remote sensing, geodesy);

- Can adequately handle the basic concepts involved in image geometry (perspective projection), having at the same time understood the basic sources of error and the revalnt correcting techniques;
- Have well comprehended the basic photogrammetric methodology (singleimage/stereoscopic) for reconstructing 3D space, thus being able to adapt it for particular cases;
- Are trained in the practical application of the concepts taught so that may combine the theoretical background with the production and evaluation of concrete results;
- Hence are in position to address in practice the fundamental photogrammetric tasks (camera calibration, space resection and intersection, relative and absolute orientation) and perform relatively simple single or double image metric tasks;
- Are capable, using the knowledge from previous courses on programming and least squares adjustments, to implement program code for solving fundamental problems;
- Have all background knowledge to comfortably follow the next compulsory courses *Photogrammetry II* and *Photogrammetry III*.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Working independently
- Production of free, creative and inductive thinking
- Able for criticism and self-criticism

(3) SYLLABUS

Introduction to photogrammetry and its importance for surveying and geoinformatics. Historic development, categorization, application fields, photogrammetric products. Analogue and digital images. Central projection and its properties. Scale of nadir images, displacement due to relief, image vanishing points. Cameras and platforms for photogrammetric recording. Image and space reference systems. 2D and 3D linear coordinate transformations. Rotation matrices. Image coordinate measurements. Ground control. Interior image orientation. Correction of image coordinates, lens distortions. Exterior image orientation. The collinearity condition as mathematical model of central projection. Scale of oblique images. Fundamental photogrammetric problems. Photogrammetric space resection – photogrammetric space intersection – camera calibration. Geometry of the stereopair – normal case of the pair. Longitudinal and lateral overlap. Stereoscopic parallax and stereoscopic viewing. Analytic orientations of the stereopair. Coplanarity condition. Relative and absolute orientation of the stereopair. Basic earlier principles of photogrammetric instruments. Single-image photogrammetry. Rectification of planar objects.

(4) TEACHING and LEARNING METHODS - EVALUATION				
DELIVERY	Face-to-face			
USE OF INFORMATION	- Support by the electronic a	synchronous course		
ANDCOMMUNICATIONS	platform			
TECHNOLOGY	eclass (exchange of informa	ation and digital data		
Use of ICT in teaching, laboratory education, communication with students	between tutors and students	5		
communication with students	- Use of electronic material as teaching aid (ppt slides).			
	- Solution of photogrammetric problems using <i>Matlab</i> .			
TEACHING METHODS	Activity Semester workload			
The manner and methods of teaching are described in detail.	Lectures	26		
described in detail.	Laboratory / Exercises	26		
The student's study hours for each learning	Preparation of Exercises	36		
activity are given as well as the hours of non- directed study according to the principles of the	Non-directed study	62		
ECTS	Course total	150		
STUDENT PERFORMANCE	Language of evaluation: Gre	ek		
EVALUATION				
Description of the evaluation procedure	Methods of Evaluation:			
Specifically-defined evaluation criteria are	• Written examination in the end of the semester (70%),			
given, and if and where they are accessible to	which combines open-ended questions and numeric			
students.	calculations.			
	• Evaluation of performance	in the Lab exercises (30%)		

(5) SUGGESTED BIBLIOGRAPHY

1. Mikhail E.M., Bethel J.S., McGlone J.C., 2001. *Introduction to Modern Photogrammetry*. John Wiley & Sons, Inc., New York

2. Wolf P.R., DeWitt B.A., 2000. *Elements of Photogrammetry with Applications in GIS*. McGrawHill, New York.

In Greek:

1. Dermanis A., 1991. *Analytic Photogrammetry*. Ziti Editions, Thessaloniki.

2. Kraus K., 2003. *Photogrammetry*. Vol 1. TEE Editions, Athens.

3. Patias P., 1991. Introduction to Photogrammetry. Ziti Editions, Thessaloniki.

Petsa E., 2000. *Fundamental Concepts and Fundamental Problems of Photogrammetry*. Course Notes, UniWA, Athens.

GEO4020 – SURVEYING NETWORKS AND COMPUTATIONS

COURSE OUTLINE: GEO4020 - SURVEYING NETWORKS AND COMPUTATIONS

(1) GENERAL

SCHOOL	ENGINEERIN	ENGINEERING			
ACADEMIC UNIT	SURVEYING	SURVEYING AND GEOINFORMATICS ENGINEERING			
LEVEL OF STUDIES	UNDERGRA	DUATE			
COURSE CODE	GEO4020		SEMESTER 4 th		
COURSE TITLE	SURVEYING	NETWORKS AN	D COMPUTATIO	NS	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	onents of the course, e.g. lectures, are awarded for the whole of the WEEKLY CREDITS			CREDITS	
	Lectures 3 3			3	
	Laboratory exercises 1 1			1	
	Total 4 4			4	
COURSE TYPE	Specialized general				
PREREQUISITE COURSES:	No prerequisite courses needed				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes (English)				
COURSE WEBSITE (URL)	https://eclass.uniwa.gr /courses/TOP117				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The aim of this course is the achievement of theoretical background and practical knowledge of the planning, establishment and measure of surveying networks, the preprocessing of the observations, the adjustment and the testing of the horizontal and vertical control networks.

Basic course goals:

- Planning of surveying networks based on quality criteria
- Establish and measure surveying networks
- Network development based on specific methodologies
- Optimal combination of data and accurate coordinate estimation
- Accuracy assessments
- Statistical testing of observations
- Adjustment validation
- Final adjustment in GGRS87 Measurement reductions

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information,
- with the use of the necessary technology
- Decision-making
- Working independently
- Production of free, creative and inductive thinking

(3) SYLLABUS

Survey networks, basic definitions. Establishment of survey networks and measurement procedures. Method for an efficient network point installation. Network observations. Horizontal angles, bearings, distances, height differences. Observation pre-processing. Accuracy requirements. Station adjustment. Angle reductions. Distance reductions. Spirit leveling observations. Observation pre-processing and accuracy assessment. Instruments choice based on Hellenic regulations. Observation of vertical angles. Network planning and adjustment. Adjustment based on observation equations model. Quality validation of horizontal networks. Accuracy estimation. Adjustment and quality check of vertical control networks. Network planning using quality criteria. Internal and external validation of topographic networks.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY.	Face-to-face			
USE OF INFORMATION	e-class, software developme	nt, communication with		
ANDCOMMUNICATIONS	students through e-class			
TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	39		
described in detail.	Laboratory practice	13		
The student's study hours for each learning	Study and analysis of	68		
activity are given as well as the hours of non- directed study according to the principles of the	bibliography			
ECTS	Course total	120		
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure	The final course evaluation is based on written examination (70%) and laboratory work (30%)			
given, and if and where they are accessible to	Language of evaluation: Greek (English if needed, e.g., e Erasmus+ students)			
students.	Written examination with short-answer questions, problem solving and laboratory work			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Baarda W., 1967. Statistical Concepts in Geodesy. Netherlands Geodetic Commission, Publications on Geodesy, New Series, Vol. 2, No. 4, Delft.
- Hazay I., 1970. Adjusting Calculations in Surveying. Akademiai Kiado, Budapest.
- Kuang S., 1996. Geodetic network analysis and optimal design: Concepts and Applications. Sams Publications, Sterling, IL.
- Mackenzie P. A., 1985. Design and Assessment of Horizontal Survey Networks. The University of Calgary.
- Vanicek P., Krakiwsky E., 1992. Geodesy: The Concepts. Elsevier, New York.

- Related academic journals:

- Journal of Geodesy
- Journal of Geodetic Sciences
- IAG Series publications

GEO4030 – THEMATIC CARTOGRAPHY

COURSE OUTLINE GEO4030 - THEMATIC CARTOGRAPHY

(1) GENERAL

SCHOOL				
	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMEN	DEPARTMENT OF SURVEYING AND GEOINFORMATICS		
	ENGINEERIN	IG		
LEVEL OF STUDIES	Undergradu	ate		
COURSE CODE	GEO4030		SEMESTER 4 th	
COURSE TITLE	Thematic Ca	rtography		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	onents of the course, e.g. lectures, are awarded for the whole of the CREDITS			CREDITS
Lectures 3			3	
		Project	1	2
	Total 4 5			
COURSE TYPE	General back	ground [obliga	tory]	·
PREREQUISITE COURSES:	-			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS				
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/modules/auth/opencourses.php?f			
	c=75			
	https://eclass.uniwa.gr/courses/TOP132/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The course aims students to get acquainted with the principles of Cartography. Rules and methodologies in thematic map design are presented. Students get familiar to collection, modification and presentation methods of thematic cartographic facts of the real world. Students also develop skills on composition and representation.

After course's successful completion, students are expected to:

- Know the theoretical background and principals of cartography, the specific rules of thematic cartography, to recognize, evaluate and classify cartographic sources and data
- To comprehend fundamental definitions of graphic semiology and to implement optic and conceptual equilibrium rules on thematic cartographic symbology
- To comprehend and the function and to implement methods of concurrent information systems and software, in the field of thematic cartographic representation

- To analyze the needs of the potential map-reader and to decide over the type of the cartographic basemaps and data that would be used for thematic representation, to decide over data management and to implement the best-fitting technical processing methods for their transformation to cartographic information
- To correlate the available cartographic information/data to the cartographic synthesis scope and the represented geographical projects and to decide over the appropriate cartographic symbology
- To produce integrated thematic cartographical representations using digital cartographic data and state-of-the-art cartographic software and GIS, to implement cartographic analysis methods, so as to interpret spatial distributions and identify spatial patterns
- To evaluate analysis results, to perform comparative analysis and to conduct relevant technical reports and documentation on the results of cartographic approach in spatial phenomena and problems
- To elaborate with other students in project elaboration and oral presentation

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search, analysis and synthesis of data and information, with the use of the necessary technology
- Adaption to new work conditions
- Decision-making
- Independent work
- Team work
- Self-evaluation
- Free, creative and inductive thinking

(3) SYLLABUS

- Introduction. Historic review. Geographic space perception. Fundamental characteristics of maps. Maps types and classification. Maps Use. Concurrent context. Technical developments and prospective
- ii. Introduction to Thematic Cartography. Cartography and thematic representations. Cartographic communication and thematic cartography. Thematic maps use. Applications. Cartographic, basemaps. Cartographic generalization and classification. Map scales and dimensional issues. Cartographic models and geographical data models
- iii. Cartographic information. Data and sources. The topographic nature of cartographic data. Spatial continuity and geometry. Cartographic data sources. Classification and evaluation methodologies. Geographic phenomena and representation models. Data and geographical variables types and classification. Geographical reference units. Geographical data measurement. Scales and measurement levels. Basic statistical prossesing.
- iv. Graphical semiology. Cartographic data visual organization. Components. Visual variables. Visual balance. Visual balance rules. Design principles. The use of color. Dimensions of color. Color models. Organizational issues of cartographic and thematic content. Nomenclature and typography.
- v. Thematic mapping and Symbolization. Qualitative distinction of geographic data. Symbols of qualitative and ranked data referred to areas, points and lines.
- vi. Quantitative Data. Continuous Phenomena Isarithmic maps Statistical Surfaces. Symbolization of absolute and grouped values. Proportional Symbols. Dot maps. Chartograms. Choropleth maps, classification and grouping values. Accuracy of choropleth maps. Quantitative data on lines. Combining data and spatial relationships.
- vii. Cartographic production. Cartographic composition. Completeness and components. Preparatory procedures. Design of thematic maps. Graphical elements of cartographic composition. The geometry of the graphic page. Auxiliary frames and lines. Presentation of thematic content. Legends. Orientation and Scales. Coordinate systems and cartographic grid. Text elements.
- viii. Cartographic Atlases. National, school, special purpose maps and digital atlases. Thematic maps and multimedia. WEB-GIS and mapping applications.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY.	Face-to-face			
USE OF INFORMATION	 Web search (legislation and 	d literature review)		
ANDCOMMUNICATIONS	 E-class UNIWA platform an 	d office Microsoft 365		
	UNIWA tools (TEAMS, Class N	Notebook, Shared docs,		
Use of ICT in teaching, laboratory education,	email)			
communication with students	 GIS and CAD software 			
	 Office software (word, pre 	sentations, spreadsheets		
	editors)			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures Theory	40		
	Exercises	20		
The student's study hours for each learning	Individual projects	35		
activity are given as well as the hours of non- directed study according to the principles of the	Team project	30		
ECTS	Home study	25		
	Course total	150		
STUDENT PERFORMANCE	Evaluation Language: Greek (English)			
EVALUATION	Evaluation methods:			
Description of the evaluation procedure	• Written exam (winter or September exams period)			
Specifically-defined evaluation criteria are	 Exercises evaluation 			
given, and if and where they are accessible to students.	 Individual project evalua 	ition		
students.	Team project evaluation			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

1. Arlinghaus, S.L. 1996. Practical Hand Book of Spatial Statistics. CRC Press.

2. Bertin, J. 1983. A new look at Cartography: Graphic communication and design in contemporary Cartography.

3. Bertin, J. (1983). The Semiology of Graphics, University of Wisconsin Press, Madison.

4. Brewer C.A., 2005. Designing Better Maps: A Guide for GIS Users, ESRI, pp. 220

5. Cuff, J.D., Mattson, T.M., 1982, Thematic maps. Their design and production., Methuen, London

6. Dent, B., 1990. Cartography: Thematic Map Design. Wm.C.Brown Publishers, Dubuque U.S.A.
7. Longley, P., Goodchild, M., Maguire, D., Rhind, D. 2001. Geographic Information Systems and Science. John Wiley& Sons, New York. 8. MacEachren, A., 2008, How Maps Work: Representation, Visualisation and Design, Guilford Press 5

9. Robinson, A. H., Sale R. D., R. D., Morrison, J. and Muehrcke, P., C. (1995) Element of Cartography, (VIth Ed.)J Wiley, New York.

10. Slocum, A. T., 2009, Thematic Cartography and Geographic Visualization, Pearson Prentice Hall

International Cartographic Association: http://icaci.org/ GeoVISTA Center: -<u>http://www.geovista.psu.edu/ http://www.askmaps.com/001/</u> <u>http://www.lib.utexas.edu/maps/thematic.html</u> Milestones in the History of Thematic Cartography: <u>http://www.datavis.ca/milestones</u>

<u>http://www.geodata.gov.gr</u>

(INSPIRE):

<u>http://europa.eu/legislation_summaries/environment/general_provisions/l28195_el.htm</u> The INSPIRE geoportal: <u>http://inspire-geoportal.ec.europa.eu/</u> Joint Research Centre - JRC - European Commission: <u>https://ec.europa.eu/jrc/en/about</u>

Environmental Systems Research Institute: <u>http://www.esri.com/</u>

- Related academic journals:

Journal of Maps: <u>http://www.journalofmaps.com</u> Cartography and Geographic Information Science: <u>http://www.cartogis.org/publications/journal.php</u> MDPI Land

GEO4040 – URBAN HYDRAULIC WORKS

COURSE OUTLINE: GEO4040 - URBAN HYDRAULIC WORKS

(6) GENERAL

SCHOOL	SCHOOL OF ENGINEERING			
DEPARTMENT	DEPARTME	NT OF SURV	EYING AND GEOINF	ORMATICS
LEVEL OF COURSE	UNDERGRA	DUATE		
COURSE CODE	GEO4040	SEMESTER	OF STUDIES 4 th	
COURSE TITLE	URBAN HYD	DRAULIC WO	RKS	
INDEPENDENT TEACH if credits are awarded for separate co lectures,laboratory exercises, etc. If th whole of the course, give the weekly tea	omponents of the ne credits are awa	course, e.g. rded for the	WEEKLY TEACHIN GHOURS	CREDITS
	Lectures	& seminars	2	
	Laborato	ry exercises	2	
		Total	4	4
COURSE TYPE	Field of Science			
PREREQUISITE COURSES:	Typically, there are not prerequisite courses.			5.
TEACHING AND ASSESSMENT LANGUAGE:	Greek			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	no			
COURSE WEBPAGE (URL)	https://eclas	s.uniwa.gr/co	urses/TOP130/	

(7) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

At the end of the course the students are expected to be in position to:

- 1. Have a comprehensive understanding of key principles of fluid mechanics
- 2. Be able to use methods and formulas to solve problems involving fundamental fluid mechanics
- 3. Be able to deploy mathematical methods for the analysis and design of pipe systems
- 4. Be able to estimate water needs for human communities
- 5. Know how to read and prepare technical drawings related to water networks.
- 6. Prepare technical reports that are well organised and effectively communicate all key information

General Abilities

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

By the end of the course the student would be able to analyze and compose given information. To enrich his or her inductive reasoning

To work autonomously and in groups

(8) COURSE CONTENT

This course investigates fundamental fluid properties and introduces the fundamental principles of static and dynamic fluid mechanics and their applications to solve typical engineering problems. In short, the following concepts are being taught: The Archimedes's principle, hydrostatic law and forces on submerged bodies, Pascal's law, Toricelli's principle, Bernoulli's law and the conservation of energy. The course covers the design and analysis of pressure pipe networks in more detail. Darcy - Weissbach's and Hazen-Williams' formulas are employed. In these engineering problems, inter-connecting pipes, reservoirs and pumps are used to transport fluids, e.g. oil or water, at specified (steady) flow rates and pressures. It also investigates energy losses in pipes as well as in pipe fixtures and fittings (Reynold's number, Moody's diagram).

The <u>main exercise assignment</u> consists of the use of a mathematical model of pressure flow (two Matlab files) for the investigation of the interplay between discharge, pressure, velocity and losses in pipe flow.

The <u>semester's project</u> consists of the design of a pressure water network for a small municipality together with the necessary drawings.

DELIVERY	Lectures.		
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of ICT in teaching, laboratory education, communication with students	e-class Also special in-house software (Excell VBA) is introduced for the solution of the Hardy-Cross method. ppt presentations Matlab files and diagrams		
TEACHING METHODS The manner and methods of teaching are	Activity	Semester Workload	
described in detail. The student's study hours for each learning	Lectures	26	
activity are given as well as the hours of non-	Homework	24	
directed study according to the principles of the	Total number of hours for the	50 hours (total	
ECTS	Course	student work- load)	
STUDENT PERFORMANCE	1. Through quick and simple applicatio	ns with bonuses	
EVALUATION	given during the lecture.		
Description of the evaluation procedure	2. Weekly exercise assignments/ Main exercise assignment		
Specifically-defined evaluation criteria are	3. Semester's Project4. Final exams		
given, and if and where they are accessible to students.			

(9) TEACHING AND LEARNING METHODS - ASSESSMENT

(10) ATTACHED BIBLIOGRAPHY

In Greek

- ΥΔΡΑΥΛΙΚΗ 2 τόμοι, Daugerty Franzini. Εκδόσεις Φούντας
- Στοιχεία Φυσικής Υδρολογίας, G. Hornberger et al. Εκδόσεις ΔΙΣΙΓΜΑ, 2019.
 Μετάφραση-Επιμέλεια Σ.Η.Καραλής
- Τερζίδης, Γ.Α., «Μαθήματα Υδραυλικής 2:Κλειστοί Αγωγοί», Εκδόσεις Ζήτη, Θεσσαλονίκη, 1997.
- Κωτσόπουλος Σ., «Υδρεύσεις», Εκδόσεις Ίων, 2013.

Periodicals

- International Journal of Hydropower & Dams, Aqua Media International, Ltd.
- Water Science and Technology: Water Supply, IWA Publishing

GEO4050 – ANALYTICAL CARTOGRAPHY

COURSE OUTLINE: GEO4050 - ANALYTICAL CARTOGRAPHY

(1) GENERAL

SCHOOL	SCHOOL OF	ENGINEERING	SCHOOL OF ENGINEERING		
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS				
	ENGINEERIN	IG			
LEVEL OF STUDIES	Undergradu	ate			
COURSE CODE	GEO4050		SEMESTER 4 th	1	
COURSE TITLE	ANALYTICA	L CARTOGRAPH	IY		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are awar the weekly teaching hours ar	varded for the whole of the course, give WEEKLY CREDIT			CREDITS	
	Lectures			4	
Lab exercises			1	1	
	Total 4 5			5	
COURSE TYPE	General background				
PREREQUISITE COURSES:					
	Preferred prerequisite knowledge: <i>General Cartography,</i> Informatics & Programming, Programming techniques & algorithms				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS					
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/modules/auth/opencourses.php?f <u>c=75</u>				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The course aims to present analytical methods applied in cartography. Specifically, the course consists of several sections, including basic principles of cartographic projections, geometrical transformations, cartometry methods, hill shading and relief representation methods, and principles of cartographic generalization. The course combines both the theoretical and the practical knowledge required towards the understanding and the application of the aforementioned sections, using (among others) modern digital tools for the implementation of mathematical computations as well as computer programming and automatization techniques.

The course includes both theoretical lectures and lab exercises aiming at the complete under-standing of the mathematical tools which are used in Cartography and consist the

basis for the support of the contemporary cartographic applications and systems. The acquired knowledge helps students to be fully aware regarding the geometric/mathematical principles connected to map utilization process, enhancing substantially at the same time their back-ground in one of the most fundamental fields (Cartography) in the science of surveying and geoinformatics engineering.

Based on the sections designed for the support of the course, the theoretical and the practical elements, which are comprehended in the framework of the course, are related to:

- a. basic principles of cartographic projections
- b. map projection systems
- c. basic geometric transformations
- d. traditional and probabilistic methods in cartometry
- e. analytical relief representation and hill shading methods
- f. geometrical operators and algorithms for cartographic visualization

After the successful completions of the course, students acquire a set of knowledge and skills that allow them to understand the function and apply analytical cartography methods, in both digital and analog environment.

At the same time, the theoretical approaches and the practical implementation of analytical cartography methods taught in the course help students in the upcoming academic semesters, as well as for the elaboration of diploma theses in the fields of Cartography and Geographic Information Systems.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Decision-making
- Working independently
- Team work
- Criticism and self-criticism
- Production of free, creative and inductive thinking

(3) SYLLABUS

Theoretical part of the Course

11. Basic principles of cartographic projections:

- Cartographic reference systems
- Coordinate systems
- Distortions of basic measures
- Linear distortion scales
- Areal distortion scales
- Ellipse of distortion
- Tissot's theorem

12.Map projection systems:

- Basic principles of systems
- Developable surfaces (cylinder, cone, & plane)
- Basic classification of map projections (normal, transverse, & oblique)
- Map projections classification based on distortions (conformal, equal-area, & equidistant)
- Normal projections
- Transverse projections
- Oblique projections
- Map projections applications
- Map projection systems in Greece

13.Basic geometric transformations:

- Translation
- Rotation
- Scale
- Similarity
- Affine
- Projective
- Basic applications in cartography
- Conversions among projection systems

14. Elements of Cartometry:

- Basic classification of cartometry methods (traditional & probabilistic)
- Lengths measurements
- Areas measurements
- Analytical methods for areas calculation
- Methods for volumes calculation
- Error estimation methods and errors propagation law
- Basic applications in cartography

15.Relief representation and hill shading:

- Hypsometric cartographic information representation
- Triangulated Irregular Network (TIN)-based Digital Elevation Models (DEMs)
- Grid-based DEMs
- Basic principles of hill shading
- shading algorithms

• applications of relief representation and hill shading methods

16.Cartographic generalization:

- Basic principles of cartographic generalization
- Geometrical operators of cartographic generalization
- Analytical algorithms of cartographic generalization (independent points, local, & global processing)

Lab Part of the Course

- Practical exercises on the computations, automatizations (using both mathematical software and computer programming techniques) and representation methods applied in analytical cartography (computations of distortion scales, generation of cartographic projections, applications of geometric transformations, & applications of cartometry methods)
- Literature review exercises (based on both the theoretical and the practical parts of the course)

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-Face			
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Utilization of E-class UNIWA platform (file exchange among professors and students) Email 			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are	Lectures	39 (13 X 3)		
described in detail. The student's study hours for each learning	Study and analysis of	39 (13 X 3)		
activity are given as well as the hours of non-	^{m-} bibliography			
directed study according to the principles of the ECTS	Laboratory practice	52 (13 X 4)		
	Lab exercises	13 (13 X 1)		
	Educational visits	7 (1 X 7)		
	Course total	150		
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students.				

(5) ATTACHED BIBLIOGRAPHY

- 12. Bugayevskiy, L. M., & Snyder, J. P. (1995). Map projections: a reference manual, London: Taylor and Francis.
- 13. Grafarend, E. W., & Krumm, F. W. (2014). Map projections. Berlin–Heidelberg: Springe.
- 14. Karras G., (1995). Linear coordinates transformations in Photogrammetry, Lectures notes, Department of Rural & Surveying Engineering, National Technical University of Athens.
- 15. Maling D.H., (1989). Measurements from Maps: Principles and Methods of Cartometry. New York: Pergamon Press.
- 16. Nakos, B., (2015). Analytical Cartography (In Greek). [ebook] Athens:Hellenic Academic Libraries Link. Available Online at: http://hdl.handle.net/11419/2233.
- Robinson, A.H., Morrison, J.L., Muehrcke, P.C., Kimerling, A.J. & Guptill, S.C. (2002). Elements of cartography (In Greek.) (Kavouras, M., Nakos, B., Tsoulos, L., Filippakopoulou V., & Tomai E. trans.), Zographos: NTUA publications.

 Snyder, J. P., & Voxland, P. M. (1989). An album of map projections (No. 1453). US Government Printing Office.
 Tsoulos, L., Skopeliti, A., & Stamou, L. (2015). Cartographic composition and production in digital environment (In Greek). [ebook] Athens:Hellenic Academic

Libraries Link. Available Online at: http://hdl.handle.net/11419/2506.

GEO4060 – ENGINEERING MECHANICS COURSE OUTLINE: GEO4060 - ENGINEERING MECHANICS

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERING			
LEVEL OF STUDIES	Undergradu	ate		
COURSE CODE	GEO4060 SEMESTER 4 th			
COURSE TITLE	ENGINEERING MECHANICS			
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are awar the weekly teaching hours ar	onents of the course, e.g. lectures, arded for the whole of the course, give TEACHING CREDITS			CREDITS
		Lectures	3	
	Exercises/ tutorials		1	
		Total	4	5
COURSE TYPE	General bac	kground		
PREREQUISITE COURSES:	Preferred prerequisite knowledge: <i>mathematics and basic science</i>			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/modules/auth/opencourses.php?f <u>c=75</u>			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

This is a 2-in-1 course that combines mechanics of rigid bodies (statics I) and mechanics of deformable bodies (strength of materials). The successful completion of the course allows students to:

- Understand the effect of forces and stresses
- Apply the principles of mechanics to different materials
- Develop problem solving skills through application of these principles to basic engineering problems
- Become familiar with the stress-strain curves, the mechanical behavior of materials, and therefore with the different types of simple stresses and with basic tests to determine the strength of materials.
- Acquire background knowledge and experience in mechanics of materials (necessary for further studies in structures; soil mechanics, statics)

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
 - Adapting to new situations
 - Decision-making
 - Working independently
- Criticism and self-criticism
- Production of free, creative and inductive thinking

(3) SYLLABUS

- Introductory terms and definitions & elements of vector algebra
- Equilibrium of rigid body
- Local constraints and degrees of freedom loading
- Forces and moments
- Beam analysis and reactions
- Trusses and frames analysis and reactions
- Geometry of cross sections
- Concept of Stress and strain Pure Bending
- Torsion
- Buckling and buckling behavior of columns
- Analysis and Design of Beams for Bending
- Shear and axial force diagrams
- Bending moment diagrams
- Gerber beams

Lab Part of the Course

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-Face		
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Web search (literature review and data sources) Utilization of E-class UNIWA platform (file exchange among professors and students) Videos 		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are	Lectures	52 (13 X 4)	
described in detail. The student's study hours for each learning	Study and analysis of	52 (13 X 4)	
activity are given as well as the hours of non-	bibliography		
directed study according to the principles of the ECTS	Laboratory practice	-	
	Lab exercises	-	
	Educational visits	-	
	Course total	104	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	 Language of evaluation: Greek Methods of evaluation: Written test mid- semester (multiple choice questionnaires, short-answer questions, & problem-solving questions) accounting for 20% Written test end of semester (multiple choice questionnaires, short-answer questions, & problem-solving questions) accounting for 80% 		

(5) ATTACHED BIBLIOGRAPHY

- 20. Aifantis Ch. 2010 (in Greek) "Introduction tp the strength of materials and rigid body mechanics", GRAPHOLINE.
- 21. Beer, Johnston, DeWolf, Mazurek. 2014 "Mechanics of materials", 7th edition, McGraw Hill.
- 22. Lecture notes

GEO4070 – Remote Sensing I

(11) GENERAL

SCHOOL	ENGINEERING				
DEPARTMENT	SURVEYING AND GEOINFORMATICS ENGINEERING				
LEVEL OF STUDIES	Undergraduate – Level 6				
COURSE CODE	GEO 407 SEMESTER OF STUDIES 4th			ı	
COURSE TITLE	REMOTE SENSING I				
INDEPENDENT TEACHI in case the credits are awarded in disc Lectures, Laboratory Exercises, etc. uniformly for the entire course, enter th the total cred	crete parts of the course e.g. If the credits are awarded he weekly teaching hours and		WEEKLY HOURS DIDASKALIAS		CREDIT UNITS
	Lectures 3 4			4	
	Labora	tory Exercises	1		1
	TOTALS 4			5	
Add rows if needed. The organisation methods used are described in detail in		d the teaching			
TYPE OF COURSE	Compulsory				
general background, specific background, specialization					
general knowledge, skills development					
PREREQUISITE COURSES:	No pre-required courses				
C.LAUSSA OF TEACHING AND EXAMINATIONS:	Greek				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	Yes (English)				
ONLINE COURSE PAGE(URL)	https://eclass.uniwa.gr/courses/GEO407/				

(12) LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course are described, the specific knowledge, skills and abilities of an appropriate level that students will acquire after the successful completion of the course.

Consult Annex A

- Description of the Level of Learning Outcomes for each course of study according to the Qualifications Framework of the European Higher Education Area
- Descriptive Indicators of Levels 6, 7 &8 of the European Qualifications Framework for Lifelong Learning and Annex B
- Summary Guide to writing Learning Outcomes

After the end of the course, students will have understood the following:

- Introduction to the basic concepts of Electro-Magnetic radiation and the physical laws of its interaction with matter and atmosphere.
- Description of digital remote sensing data
- Description of the principles of satellite navigation
- Reporting of key earth observation programmes by research and commercial satellites
- Princples for the recognition, pre-processing and improvement-correction of digital images
- Basic principles and description of multi-spectral images, thermal infrared and radar
- Introduction to digital image analysis software

General Competencies

Taking into account the general skills that the graduate must have acquired (as these are listed in the Diploma Supplement and listed below) which / which of them is the subject of the course intended for?.

Search, analysis and synthesis of data and information,	Project planning and management		
using the necessary technologies	Respect for diversity and multiculturalism		
Adaptation to new situations	Respect for the natural environment		
Decision-making	Demonstration of social, professional and moral responsibility		
Autonomous work	and sensitivity to gender issues		
Teamwork	Criticism and self-criticism		
Working in an international environment	Promoting free, creative and inductive thinking		
Working in a multidisciplinary environment			
Production of new research ideas	Other		

- Search, analysis and synthesis of data and information, using the necessary technologies
- Decision-making
- Autonomous work
- Teamwork

(13) COURSE CONTENT

Theoretical Part of the Course

Basic principles of Electro/Magnetic (E/M) radiation (laws, interactions of electromagnetic radiation with the atmosphere and the surface of the Earth, spectral signatures). Pre-processing of digital image (Geometric deformations, geo-reference, atmospheric and radiometric correction). Methods of image enhancement (Histogram, filters); basic concepts of image sorting. Presentation and description of digital remote sensing data (multispectral sensors, visible/infrared, thermal infrared, Radar, Lidar). Inking/geometry of satellite systems. Space programmes and Earth Observation sensors (Sentinel, Landsat, IKONOS, QuickBird, Worldview).

Laboratory Part of the Course

Use of specialized software (e.g. ENVI), Reading and description of multispectral data of digital imagery. Histogram, geometric, radiometric and atmospheric corrections. Image improvement methods.

WAY OF DELIVERY Face to face, Distance learning, etc.	Face to face		
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of TEIs in Teaching, Laboratory Education, Communication with students	Lectures: Use of ICT (power point presentations) Laboratory exercises: use of specialized software for th analysis of digital image data. Communication: use of asynchronous tele-educatio platform-eclass		
TEACHING ORGANIZATION	Activity	Semester Workload	
The way and methods of teaching are described in detail.	Lectures	60	
described in detail. Lectures, Seminars, Laboratory Exercise, Field Exercise, Study & Bibliography Analysis,	Study & analysis of bibliography	60	
Tutorial, Practical (Placement), Clinical Exercise, Art Workshop, Interactive	Laboratory Exercises	30	
Teaching, Educational Visits,	Total Course	150	
Project, Project, Writing a Project, Writing a Paper, Artistic Creation, etc. The student's study hours for each learning activity are listed, as well as the hours of a non-guided study according to the principles of ECTS			
STUDENT EVALUATION			
Description of the evaluation process Evaluation Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Report/ Report, Oral Examination, Public Presentation, Laboratory Thesis, Clinical Examination, Clinical Examination, Artistic Interpretation, Other/	 Multiple-choice findevelopment quest <u>Laboratory Exercise</u> 	tions(70%)	

(14) TEACHING AND LEARNING METHODS - EVALUATION

Other	Language of the examination: Greek (English if needed,	
Explicitly defined assessment criteria are mentioned and if and where they are	e.g., Erasmus+students)	
accessible to students.		

(15) RECOMMENDED BIBLIOGRAPHY

Greek:

- 1. Skianis Eim. G., Nikolakopoulos G. K., Vaiopoulos A. D. 2012. "Remote Sensing" ION Publications 336sel.
- 2. Kartalis K., C., 2007, Fidas, "Principles & Applications of Satellite Remote Sensing", V. Gkiourdas Ekdotiki, Athens.
- 3. Mertikas S.P., 2006, "Remote Sensing and Digital Image Analysis", ION Publications

English:

- 1. Campbell J.B., 2006. Introduction to Remote Sensing, The Guilford Press, New York.
- 2. Cracknell A.P., L. Hayes, 2007. Introduction to Remote Sensing, CRC Press.
- 3. Jensen J.R., 2005. Introductory Digital Image Processing: A Remote Sensing Perspective. Prentice Hall.
- 4. Mather P., 2004. Computer Processing of Remotely Sensed Images: An Introduction. Wiley.
- 5. Schowengerdt R.A., 2006. Remote Sensing: Models and Methods for Image Processing, Academic Press.

5th Semester

GEO5010 – GEOMETRICAL GEODESY

COURSE OUTLINE: GEO5010 - GEOMETRICAL GEODESY

(1) GENERAL

SCHOOL	ENGINEERING			
ACADEMIC UNIT	SURVEYING AND GEOINFORMATICS ENGINEERING			
LEVEL OF STUDIES	UNDERGRA	UNDERGRADUATE		
COURSE CODE	GEO5010 SEMESTER 5 th			
COURSE TITLE	GEOMETRICAL GEODESY			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		onents of the course, e.g. lectures, are awarded for the whole of the CREDITS		CREDITS
Lectures		4		4
	TOTAL 4 4		4	
COURSE TYPE	Specialized general			
PREREQUISITE COURSES:	No prerequisite courses needed			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes (English)			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr /courses/TOP103			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The aim of this course is the study of the shape of the earth, the ellipsoidal model and its geometry, the basic geodetic problems. Observations, reference systems and coordinates. Geodetic datum. Observation reductions. Coordinates and datum transformations. Introduction to Physical and Space Geodesy. Geodetic networks. Applications. Basic course goals:

- Basic geodetic applications in earth's ellipsoidal model
- Geodetic reference systems and ellipsoid geometry
- Reference surfaces in Geodesy
- Coordinates estimation and transformation in various datums
- Estimation and assessment of geodetic transformation parameters
- Horizontal and Vertical datum
- Observations reductions to the ellipsoid or the map

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information,
- with the use of the necessary technology
- Decision-making
- Working independently
- Production of free, creative and inductive thinking

(3) SYLLABUS

Historical aspects of Geodesy. Reference surfaces (sphere, ellipsoid, geoid). Point positioning. Earth motion (revolution, polar motion). Best fitting of an ellipsoid to the geoid surface. Geocentric ellipsoid, geodetic ellipsoid. Ellipsoidal parameters. Reference systems. Geodetic Cartesian and ellipsoid coordinates. Geocentric and geodetic reference systems, local astronomical (physical) and geodetic system. Deflection of the vertical. Coordinate transformations. Geodetic datum definition. Inertial and celestial reference systems. Time systems (solar, sidereal time, UTC, GPS time). Astronomical latitude and longitude. Ellipsoidal geometry. Radii of curvature. Meridian arc length. Parallel arc length. Lines on the ellipsoid. Normal section. Geodesic. Observation reductions to the ellipsoid. Plumb line and vertical. Angle and distance reductions. Geodetic networks. Observation equations on the ellipsoid. Geodetic network adjustments. Physical Geodesy. Height systems. Introduction to Earth's gravity field. Gravity potential and gravity acceleration. Equipotential surfaces and the geoid. Mean Sea Level. Gravity field approximations. Geoid estimation methods. Combination of heights (N, h, H).

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION ANDCOMMUNICATIONS	e-class, software development, communication with		
TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students			
TEACHING METHODS	Activity Semester workload		
The manner and methods of teaching are described in detail.	Lectures	52	
described in detail.	Laboratory practice	48	
The student's study hours for each learning	Study and analysis of	20	
activity are given as well as the hours of non- directed study according to the principles of the	bibliography		
ECTS	Course total	120	
STUDENT PERFORMANCE	The final course evaluation is based on written		
EVALUATION	examination with short-answer questions, problem		
Description of the evaluation procedure	solving and laboratory work		
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Language of evaluation: Greek (English if needed, e.g., Erasmus+ students)		

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Bomford G, 1980. Geodesy. 4th Edition. Clarendon Press, Oxford.
- Heiskanen W. A., Moritz H., 1967. Physical Geodesy. Freeman & Co, San Francisco.
- Torge W., 2001. Geodesy. 3rd Edition. Walter de Gruyter, Berlin.
- Vanicek P., Krakiwsky E., 1992. Geodesy: The Concepts. Elsevier, New York.

- Related academic journals:

- Journal of Geodesy
- Journal of Geodetic Sciences
- IAG Series publications

GEO5020 – PHOTOGRAMMETRY II (Analytical Photogrammetry)

COURSE OUTLINE: GEO5020 - PHOTOGRAMMETRY II (Analytical Photogrammetry)

(1) GENERAL

SCHOOL	ENGINEERING					
ACADEMIC UNIT	DEPT. OF SU	DEPT. OF SURVEYING & GEONIFORMATICS ENGINEERING				
LEVEL OF STUDIES	Graduate – I	Level 6				
COURSE CODE	GEO5020		SEMESTER	5 th		
COURSE TITLE	Photogramm	netry II (Analyti	ical Photogra	mm	etry)	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are awar the weekly teaching hours ar	vonents of the course, e.g. lectures, varded for the whole of the course, give TEACHING CREDITS					
	Lec	tures and Labs	4(2/2)		4	
		TOTAL	4		4	
COURSE TYPE	Specialized general knowledge					
PREREQUISITE COURSES	Photogrammetry I It is suggested to be taken after completion of courses Analytic Geometry, Linear Algebra & Matrices, Error Theory & Adjustment of Observations I, Programming Techniques & Algorithms.					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek					
OFFERED TO ERASMUS STUDENTS	Can be taught in English					
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/modules/auth/opencourses.php?fc =75					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Basic purpose of this course, following that of *Photogrammetry I*, is to convey to students the necessary adequate knowledge regarding the processes of image block adjustment (aerial triangulation / phototriangulation) and the processes of reconstruction, particularly those involving the modern photogrammetric systems, the photogrammetric products, the planning of photogrammetric projects as well as their accuracies and specifications. At the same time the students acquire deeper insight and familiarity with the mathematical models and adjustment techniques through which the basic photogrammetric processes are performed.

After completing the course, the students:

- Have got to know the concepts and techniques of modern photogrammetric practice
- Have comprehensive theoretical knowledge regarding bundle block adjustment and photogrammetric 3D reconstruction
- Have been practically familiarized with modern systems and the software of

photogrammetric processing as well as with today's photogrammetric products (DTM, 3D scene models, orthomosaics).

- Are in position to address basic photogrammetric tasks via suitable methodologies and systems or software, by adapting the photogrammetric process to the requirements of each particular project.
- Will be capable to develop algorithms for the application of the above methods.
- Will be in position to design photogrammetric studies taking into account the given accuracy levels and specifications.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Working independently
- Working in an interdisciplinary environment
- Production of free, creative and inductive thinking

(3) SYLLABUS

Review of concepts taught in course *Photogrammetry I*. Digital aerial cameras. Specifications and planning of aerial photography. Image acquisition flights and modern navigation systems for aerial platforms. Analytical photogrammetric algorithms. Direct linear transformation (DLT). Phototriangulation and aerial triangulation. Method of independent models. Multi-image bundle adjustment. Camera self-calibration. Introduction of additional parameters, geodetic constraints GPS observations. The issue of initial values. Specifications of aerial triangulation. Bundle adjustment without ground control (free network). Photogrammetric 3D reconstruction. Early analytical plotters and digital photogrammetric workstations. Today's photogrammetric software. Digital photogrammetric products. Photogrammetric generation of digital elevation and terrain models. Other method for DEM/DTM generation (LIDAR, SAR, terrestrial laser scanners). Surface triangulation. Image orthorectification. Accuracy of photogrammetric products. Greek and international specifications for photogrammetric projects. Photogrammetric processing of high-resolution satellite images – methods and products. Applications of terrestrial photogrammetry.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face			
USE OF INFORMATION	- Support by the electronic a	synchronous course		
ANDCOMMUNICATIONS	platform			
TECHNOLOGY	eclass			
Use of ICT in teaching, laboratory education, communication with students	 Use of electronic material as teaching aid (ppt slides). Solution of photogrammetric problems using <i>Matlab</i>. Use of free and commercial software for Lab exercises. 			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are	Lectures	26		

described in detail.	Laboratory / Exercises	26		
The student's study hours for each learning	Preparation of Exercises	16		
activity are given as well as the hours of non-	Non-directed study	52		
directed study according to the principles of the ECTS				
	Course total	120		
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure	Language of evaluation: Greek			
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	 Methods of Evaluation: Written examination in the end of the semester (70%), which combines open-ended questions and numeric calculations. 			
	• Evaluation of performance in the Lab exercises (30%)			

(5) SUGGESTED BIBLIOGRAPHY

3. Mikhail E.M., Bethel J.S., McGlone J.C., 2001. *Introduction to Modern Photogrammetry*. John Wiley & Sons, Inc., New York

4. Wolf P.R., DeWitt B.A., 2000. *Elements of Photogrammetry with Applications in GIS*. McGrawHill, New York.

5. Graham R., Read R., 2007. *Manual of Aerial Survey: Primary Data Acquisition*. 2nd edition, Whittles Publishing, Scotland, UK

In Greek:

4. Dermanis A., 1991. *Analytic Photogrammetry*. Ziti Editions, Thessaloniki.

5. Kraus K., 2003. *Photogrammetry*. Vol 1. TEE Editions, Athens.

GEO5030 - ROAD GEOMETRIC DESIGN I

COURSE OUTLINE: GEO5030 - ROAD GEOMETRIC DESIGN I

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING				
ACADEMIC UNIT	DEPARTMEN	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN	IG			
LEVEL OF STUDIES	Undergradu	ate			
COURSE CODE	GEO5030		SEMESTER	5 th	
COURSE TITLE	ROAD GEON	/IETRIC DESIGN	11		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are aw give the weekly teaching hours	weekly CREDI awarded for the whole of the course, US and the total credits			CREDITS	
Lectures & Individual Exercise (The	heoretical part of the Course) 2				
· · ·					
Group Exerc	ise (Lab Part	of the Course)	2		
		Total	4		5
COURSE TYPE	General bac	kground			
PREREQUISITE COURSES:	No				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)				
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/GEO192/				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

After the successful completion of the course, students will be able to:

- Understand the design process and the degree of detail per stage of study of a road project
- Understand the limitations and commitments under which critical limit values are derived
- Apply basic principles and methods related to safe and functional road design
- Evaluate combinations of critical parameters regarding road design quality
- Solve common problems that occur in the process of geometric road design

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

After the successful completion of the course, students acquire the following knowledge and skills:

- Search for analysis and synthesis of data and information, with the use of the necessary technology tools
- Teamwork
- Work in an interdisciplinary environment
- Design and project management
- Respect the natural environment
- Production of free, creative and inductive thinking

(3) SYLLABUS

Theoretical part of the Course

17. Hierarchy of road network

- 18. Selection of Standard Section Based on Circulatory Capacity
- 19. Vehicle Simulation in Road Construction
- 20.Vehicle Dynamics
 - Adhesion
 - Promotional Power
 - Braking force
 - Vehicle Movement in Curves
- 21.Speeding, Safety Criteria
- 22.Design principles in Horizontal alignment
- 23.Design in Vertical alignment
- 24.Design principles of superelevation
- 25. Cross sections Lateral Configurations
- 26.Road Design in Space, Visibility
- 27.Earthworks
- 28.Widening Enlargement

Lab Part of the Course

A series of exercises in the main cognitive objects of the theory, the composition of which results in the design of a road section at the preliminary design level.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-Face				
	 Lectures - interactive teaching in the classroom 				
	 Encouraging students to attend related Workshops, 				
	Conferences, etc.				
USE OF INFORMATION	Presentations in the black	board			
ANDCOMMUNICATIONS	Presentations through Pow	ver Point slides			
TECHNOLOGY					
Use of ICT in teaching, laboratory education, communication with students					
TEACHING METHODS	Activity	Semester workload			
The manner and methods of teaching are described in detail.	Lectures	52 (13 X 4)			
The student's study hours for each learning	A series of exercises in the	60			
activity are given as well as the hours of non-	main cognitive objects of				
directed study according to the principles of the ECTS	the theory, the composition				
ECIS	of which results in the				
	design of a road section at				
	the preliminary design level.				
	, , ,				
	Delivered individually				
	Study and preparation for	38			
	the exams				
	Course total	150			
STUDENT PERFORMANCE	Language of evaluation: Gre	ek			
EVALUATION					
Description of the evaluation procedure	Theoretical part of the Course				
	• Written exam (50%)				
Specifically-defined evaluation criteria are					
given, and if and where they are accessible to students.	Lab Part of the Course				
	Delivery of individual	exercises and oral			
	examination (50%)				

(5) ATTACHED BIBLIOGRAPHY

- 23. Apostoleris Anastasios. "Road Geometric Design 1", 1st Edition, 2013, Athens.
- American Association of State Highway and Transportation Officials (AASHTO). A Policy on Geometric Design of Highways and Streets, Fifth Edition. Washington, DC., USA 2011
- 25. Ed.German Road and Transportation Research Association, Committee, Geometric Design Standards. Guidelines for the Design of Roads, (RAA), Germany 2008.
- 26. Ed.German Road and Transportation Research Association, Committee, Geometric Design Standards. Guidelines for the Design of Rural Roads, (RAL), Germany 2012.
- 27. Hassan, Y., Easa, S. M. and Abd El Halim, A.O. Analytical Model for Sight Distance Analysis on Three-Dimensional Highway Alignments, Transportation Research Record, Vol. 1523, 1996.
- Zimmermann, M. Increased Safety Resulting from Quantitative Evaluation of Sight Distances and Visibility Conditions of Two-Lane Rural Roads. Proceedings of the 3rd International Symposium on Highway Geometric Design, TRB, Chicago, USA 2005.

- 29. Dixon J.C., "Tires, Suspension and Handling". Second Edition. Society of Autimotive Engineers, Inc Warrendale, Pa., United Kingdom 1996.
- 30. Gillespie T.D. "Fundamentals of Vehicle Dynamics". Society of Mining Metallurgy and Exploration Inc.1992.
- 31. Heisler H. "Advanced Vehicle Technology". Edward Arnold. A Division of Hobber & Stoughton, Germany 1993.
- 32. Jazar R."Vehicle Dynamics, Theory and Application". Third Edition. Springer International Publishing AG, 2017, Switzerland 2017.

GEO5040 – GEOGRAPHIC INFORMATION SYSTEMS & SCIENCE

COURSE SYLLABUS: GEO5040 – GEOGRAPHIC INFORMATION SYSTEMS & SCIENCE

(1) GENERAL

SCHOOL	SCHOO	SCHOOL OF ENGINEERING				
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS					
	ENGIN	EERING				
LEVEL OF STUDIES	MSc.					
COURSE CODE	GEO50	040		SEMESTER	5 th	
COURSE TITLE	Geogr	aphic Inform	nation Systems	and Science		
if credits are awarded for separate comp exercises, etc. If the credits of	TEACHING ACTIVITIES mponents of the course, e.g. lectures,laboratory ts are awarded for the whole of the eaching hours and the total credits CREDIT GHOURS				CREDITS	
	Lectures 3 3				3	
	Lab exercises 1 2				2	
	TOTAL 4 5			5		
COURS	Е ТҮРЕ	specialized	general knowle	edge, skills de	velop	oment
PREREQUISITE COL	IRSES:	Thematic Ca	artography			
LANGUAGE OF INSTRUCTIO EXAMINAT	I-rook					
IS THE COURSE OFFER ERASMUS STUI						
COURSE WEBSITE	https://eclass.uniwa.gr/modules/auth/opencourses.php?					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The aim of the course is to present the necessary concepts to students so that they are able to design, develop, manage and implement a complete system of geographic information using modern tools, methods, and techniques in an ever-changing competitive environment.

By its nature, the science of Geographical Information is an interdisciplinary subject, which, however, apart from the high standards of its theoretical existence, also has a large part of the application of its methods. Therefore, the course material and its structure in two distinct but interrelated sections (theoretical and applied), aims at a deeper understanding of both the substance and the methodology, as well as the management of geospatial information with the most modern software tools related to the subject. At the same time, the knowledge and skills acquired by the students attending the course do not lead to a sterile and strictly theoretical training, but through a known and accessible to the average student in the 6th level of complexity of the subjects raised, they are faced with issues. to be faced in the labor market. In addition, they receive all those cognitive supplies and skills, which in combination with the more specific cognitive subjects of the Science of Geographical Information contained in their curriculum, acquire the opportunity to claim their place in the next level (8th) of their studies.

According to the design of the content of the specific subject, students cognitively approach the

following:

a) The fundamental concepts, functions, and capabilities of Geoinformatics and Geospatial Information Management Systems,

b) The different types and structures of data, their advantages, and disadvantages

c) The relations between the categories of geographical data,

d) The theoretical and technological knowledge, but also the technical skills related to the registration, analysis, management, retrieval, and display of geospatial information

e) The design, creation, and development of integrated Geographic Information Systems,

f) The importance of Geoinformatics projects in projects of national and international scope.

Therefore, the objectives of this subject matter extend to a description of those who have successfully attended this subject, which has the following characteristics:

a) The assimilation of theoretical and applied knowledge on the Science of Geographical Information.

b) The development of intellectual and practical skills in solving problems that arise in the design, creation, and management of integrated Geographic Information Systems.

c) The development of skills through the synthetic creation and support of arguments related to the science of Geographical Information and strengthen the responsibility and autonomy to acquire sufficient opportunity for further professional and personal development.

d) The development of possibilities of a professional approach to the object through the use of the knowledge and understanding acquired during the work of creation and management of integrated Geographic Information Systems but also of a communicative nature through which the results of the work are successfully communicated to both specialized and non-specialized -skilled audience.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search, analysis, and synthesis of data and information, using the necessary technologies
- Adaptation to new situations
- Decision making
- Autonomous work
- Teamwork
- Exercise criticism and self-criticism
- Promoting free, creative, and inductive thinking

(3) SYLLABUS

Theoretical Part of the Course

- 1. Geographical and Spatial Data and Information, Geoinformatics, Science of Geographical Information:
 - Basic principles and terminology
 - Information, data, and spatial reports.
 - Geospatial information, data sources, technologies, and techniques for their collection.
 - Organization of Geospatial Information, models, and structures.
 - Introduction to Geographic Information Systems, characteristics, definitions, evolution over time, categories and species, components, function, use.
- 2. Conceptual Codification:

- Spatial non-spatial properties, characteristics of spatial entities.
- Structure, relationships, and combinations of spatial entities, spatial changes, mechanisms of spatial data organization.
- 3. The Geometry of Spatial Information:
 - Geographical location, representation, dimensions, placement of geographical objects in spatial reference systems.
 - Vector models, point and distance view, line and surface view, topological relations.
 - Raster models and their topological relations.
 - Data entry subsystems, management of geometric information in GSP, transformations.
- 4. Geospatial Databases Models and Structures:
 - Architecture and structure of a database management systems.
 - Design and development of spatial databases. Input of descriptive information, connection to external databases, methods of correlation of the data.
- 5. Codification Integration of Spatial Information: Connection and correlations of Geometric Descriptive Information.
 - Recognition correction of errors. Topological integration. Retrieval, information update, spatial queries.
 - Geographic Information on the Internet (Web-GIS, Internet Mapping).
 - Specifications, Protocols, Structure, Diffusion, and Interoperability.
 - National and international geographic data networks.
- 6. Principles of Analysis and Design of a GIS:
 - Terminology
 - General design
 - Identification of input elements.
 - Analysis of financial characteristics
 - Customization of the organization by a group of users
 - Detailed system design
 - Meta-information dictionaries
 - Problems
- 7. Introductory elements of Spatial Analysis.

Applied Part of the Course

- Organization, classification, codification, and normalization of geospatial information
- Design and development of geospatial databases
- Introduction of geometric, pictorial, and descriptive data in a geographic information system
- Automation of geospatial information Geometric topological relations and topological integration.
- Retrieval, management, and updating of geospatial information
- Visual representation (mapping) of geospatial information
- Interoperability

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-Face

USE OF INFORMATION	• Web search (literature review a	nd data sources)		
ANDCOMMUNICATIONS	Utilization of E-class UNIWA pla	tform (file exchange		
TECHNOLOGY	among professors and students)		
Use of ICT in teaching, laboratory education, communication with students	• Use of email			
	Use of specialized software (bot			
	open source) for the manipulati	on, editing and		
	mapping of the geospatial data			
	• Use of Office software (word, pr	resentations,		
TEACHING METHODS	spreadsheets) Activity	Semester workload		
The manner and methods of teaching are described		39		
in detail.	Lectures Study and analysis of	39		
The student's study hours for each learning activity	Study and analysis of	30		
are given as well as the hours of non- directed study	bibliography	13		
according to the principles of the ECTS	Laboratory practice Elaboration of individual study	35		
	Educational visits	8		
		0		
	Course total			
	(25 hours of workload per credit	125		
	unit)	125		
STUDENT PERFORMANCE	Language of Evaluation: Greek			
EVALUATION	Evaluation Methods			
Description of the evaluation procedure	 Written exam at the end of t 	he semester		
Specifically-defined evaluation criteria are given,	(Multiple choice, short devel	opment and problem-		
and if and where they are accessible to students.	solving exercises)			
	Homework evaluation (development of			
	theoretical topic and commentary of scientific			
	articles			
	Evaluation of laboratory work (development of			
	the topic of creating and managing an integrated			
	GIS)			
	Oral presentation of work (N	Is Office presentation		
	of the theoretical topic)			

(5) ATTACHED BIBLIOGRAPHY

Books

- P. Longley, M. Goodchild, D. Maguire, D. Rhind, 2010. "Geographic Information System and Science", 6th edition. Publication in Greek language, by Klidarithmos Editions, Athens.
- 2. J. Katsios, A. Tsatsaris, 2014. "Lectures of Thematic Cartography", Publication in Greek language, by Disigma Editions, Thessaloniki.
- 3. A. Zisou, 2007. "Introduction to Geographic Information Systems. ArcGis-ArcView. Publication in Greek language, by Stamoulis Editions.
- 4. E. Stefanakis, 2010. "Geographical Databases and GIS". 2nd edition. Publication in Greek language, by Papasotiriou Editions.
- 5. Bolstad, P., 2016. GIS Fundamentals: A First Text on Geographic Information Systems, Fifth Edition, Eider Press.
- 6. Kerski, J. & Clark, J., 2014. The GIS Guide to Public Domain Data. ESRI Press

- 7. Rigaux, P, Scholl, M, 2002, Spatial databases :with application to GIS, San Francisco, CA: Morgan Kaufmann Publishers
- 8. McDonnell, R, Kemp, K, International GIS dictionary Cambridge, [England] : GeoInformation International ; New York, NY : John Wiley & Sons , 1995
- 9. Kraak, M. J., Ormeling, F. J., 1996, Cartography: Visualization of spatial data, Harlow, Longman

Web pages

- 1. <u>http://www.hellasgi.gr/</u> (Greek Organization for Geographic Information)
- 2. <u>http://eurogi.org/</u> (European Umbrella Organization for Geographic Information)
- 3. <u>http://www.opengeospatial.org/</u> (Open Geospatial Consortium)
- 4. <u>http://support.esri.com/other-resources/gis-dictionary/a</u> (GIS Dictionary)
- <u>http://www.ncgia.ucsb.edu/Publications/Tech_Reports/92/92-13.PDF</u> (GIS Terminology)
- 6. <u>http://hydroscope.gr/</u> (National Bank of Hydrological and Meteorological Information) <u>http://www.geodata.gov.gr/</u> (Public Open-source national geoportal)
- 7. <u>https://www.gislounge.com/open-source-gis-applications/</u> (Open Source GIS Software)
- 8. <u>https://www.gislounge.com/gis-software-applications/</u> (Commercial and Proprietary GIS Software)
- 9. <u>https://www.gislounge.com/bibliographies/ (Bibliographies)</u>

Scientific Journals

- 1. International Journal of Geographical Information Science, Taylor & Francis
- 2. Geoinformatica, Springer
- 3. Journal of Geographical Systems, Springer
- 4. Journal of Geographic Information System Scientific Research
- 5. ISPRS-International Journal of Geo-Information (IJGI is an open access journal of MDPI)

GEO5050 – SATELLITE SURVEYING

COURSE OUTLINE: GEO5050 - SATELLITE SURVEYING

(1) GENERAL

SCHOOL	ENGINEERIN	G			
ACADEMIC UNIT	SURVEYING AND GEOINFORMATICS ENGINEERING				
LEVEL OF STUDIES	UNDERGRAD	DUATE			
COURSE CODE	GEO5050		SEMESTER	5 th	
COURSE TITLE	SATELLITE SU	JRVEYING			
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	are awarded for the whole of the WEEKLY CREDITS				
	LECTURES 3 3				3
	LABORATORY EXCRCISES 1 2			2	
	TOTAL 4 5				5
COURSE TYPE	E special background				
PREREQUISITE COURSES:	No prerequisite courses. It is recommended that the students have obtained the fundamental knowledge of the course "Geometrical Geodesy".				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:					
IS THE COURSE OFFERED TO ERASMUS STUDENTS					
COURSE WEBSITE (URL)	https://eclas	s.uniwa.gr/cou	rses/TOP127	2	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The aim of this course is to give a deep understanding of the fundamental principles of satellite surveying using GNSS (Global Navigation Satellite Systems). Emphasis is given in geodetic satellite surveying, i.e. techniques offering cm level precision. The students learn how to choose the appropriate satellite receiver and measurement technique in order to fulfill the requirements of each work. They also learn how to plan and conduct GNSS measurements understanding potential error sources (multipath, E/M interferences etc.) as well as how to process the satellite observations and estimate coordinates and heights in the local reference systems.

Upon successful completion of the course the students will be able to:

- understand the operation principles of GPS and GNSS receivers
- understand the GPS signal structure (carrier frequencies, PRN codes, navigation message)
- understand the basic satellite measurement methods (absolute, relative, static-kinematic, RTK)
- understand the basic error sources that affect the GNSS measurements as well as

the methods used to mitigate these errors

- understand the pseudorange and phase measurements and the mathematical models for data processing (single- double-differences, ambiguity resolution)
- understand the network-based methods (Single-base, VRS, MAC, FKP)
- plan and conduct geodetic GNSS measurements
- process the satellite observations and estimate coordinates with accuracies on the mm or cm level
- apply network-based techniques using networks of permanent reference stations like e.g. the Hellenic Positioning System

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Working independently
- Team work
- Production of new research ideas

(3) SYLLABUS

Theoretical part:

- Introduction to satellite surveying
- Global Navigation Satellite Systems (GPS, GLONASS, GALILEO)
- Coordinate and time reference systems used in satellite surveying.
- GPS signals (carrier frequencies, PRN codes), orbital elements.
- GPS receivers, receiver and antenna technology.
- Surveying techniques (autonomous-relative, static-kinematic, real-time techniques, RTK).
- Error sources and elimination methods.
- Mathematical models for carrier-phase processing (single-, double- and tripledifferences), fast ambiguity resolution algorithms.
- Satellite based augmentation systems (EGNOS and WAAS).
- GNSS networks: design, measurement, baseline reductions and tie to the national Geodetic Reference System.
- Determination of orthometric heights by means of GNSS.
- Continuously Operating Reference Stations networks.
- Network-based techniques (VRS, FKP, MAC) used in CORS networks like the Hellenic Positioning System (HEPOS).

Laboratory part:

- Measurement planning using GNSS planning software
- Field measurements with GPS and GNSS receivers (static, RTK)
- Set up of a geodetic GNSS receiver, measuring and converting the antenna height

• Processing of carrier phase observations (baseline reduction, evaluation of reliability), network adjustment, geodetic datum transformation, estimation of orthometric heights.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face				
Face-to-face, Distance learning, etc.	,				
USE OF INFORMATION	Use of ICT in teaching (Power	Point presentations, videos)			
ANDCOMMUNICATIONS	• Use of an asynchronous e-l	earning platform (e-class).			
TECHNOLOGY	 Use of e-mail 				
Use of ICT in teaching, laboratory education, communication with students	 Use of the GNSS software in 	n laboratory.			
TEACHING METHODS	Activity	Semester workload			
The manner and methods of teaching are described in detail.	Lectures	52			
	study and analysis of	37			
The student's study hours for each learning	bibliography				
activity are given as well as the hours of non- directed study according to the principles of the	laboratory practice	25			
ECTS	Laboratory preparation and	36			
	essay writing				
	Course total	150			
STUDENT PERFORMANCE	Assessment language: Greek (English for ERASMUS				
	students upon request)				
Description of the evaluation procedure					
	Performance evaluation met	hod:			
Specifically-defined evaluation criteria are	 Final Written Exam (80% of 	f the final grade) of graded			
given, and if and where they are accessible to students.	difficulty, which include shor	t-answer questions, open-			
	ended questions and solving	simple problems.			
	 Evaluation of laboratory we 	ork (20% of the final grade)			
	which includes exercises (processing of GNSS data).				
	The evaluation criteria have been presented to the				
	students before the final examination. Students can see				
	their evaluation upon request and receive clarifications on their grades.				
	on their grades.				

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography (in Greek):

1. Φωτίου Α., Πικριδάς Χ., 2012. GPS και Γεωδαιτικές Εφαρμογές. Εκδόσεις Ζήτη, Θεσσαλονίκη.

2. Δερμάνης Α., 1999. Διαστημική Γεωδαισία και Γεωδυναμική – GPS. Εκδόσεις Ζήτη, Θεσσαλονίκη

- Suggested bibliography (in English):

 Hofmann-Wellenhof B., Lichtenegger H., Wasle E., 2008. GNSS: Global Navigation Satellite Systems – GPS, GLONASS, Galileo, and More. Springer-Verlag, Wien/New York.
 Leick A., 2004. GPS Satellite Surveying. 3rd edition, John Wiley & Sons, New Jersey.

3. Seeber G., 2003. Satellite Geodesy. 2nd edition, De Gruyter, Berlin.

GEO5060 – TECHNICAL HYDROLOGY

COURSE OUTLINE: GEO5060 - TECHNICAL HYDROLOGY

(1) GENERAL

SCHOOL	SCHOOL OF	SCHOOL OF ENGINEERING				
DEPARTMENT	DEPARTME	NT OF SURV	EYING AND GEOIN	FORMATICS		
LEVEL OF COURSE	UNDERGRA	DUATE				
COURSE CODE	GEO5060	SEMESTER	OF STUDIES 5 th			
COURSE TITLE	TECHNICAL	HYDROLOG	(
INDEPENDENT TEACH	IING ACTIVITI	ES	WEEKLY			
if credits are awarded for separate co	omnonents of the c	ourse, e.a.	TEACHIN	CDEDITC		
lectures, laboratory exercises, etc. If th			GHOURS	CREDITS		
whole of the course, give the weekly tea						
	Lectures & seminars 2					
	Laboratory exercises 2					
		Total	4	4		
COURSE TYPE	Field of Scie	nce				
PREREQUISITE COURSES:	Typically, there are not prerequisite courses.					
TEACHING AND ASSESSMENT LANGUAGE:	Greek					
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES					
COURSE WEBPAGE (URL)	https://ecla	ss.uniwa.gr/	modules/auth/ope	encourses.php?fc=75		

(2) LEARNING OUTCOMES

Learning outcomes

At the end of the course the students are expected to comprehend basic concepts of the water cycle and hydrology

1. Students understand the essential components and function of the hydrologic cycle including precipitation, evaporation/evapotranspiration, overland flow and surface storage, groundwater flow and storage, and channel flow, and storm water runoff. Assignments that demonstrate accomplishment of this outcome: a. <u>first project</u> -> water balance in a Greek basin with the use of the Thornwaite method. b. final exams

2. Students are able to delineate the divide of a water basin on a topographical map.

3. Students know the basic statistics and their terminology involved in Hydrology. Comprehend what the Intensity-Duration-Frequency curves are, and what is their use.

4. Know how to solve the Manning's formula.

5. Students are able to perform engineering hydrology computations and subsequent dimensioning of hydraulic elements: Design discharge with the use of the Rational method.

Assignments that demonstrate accomplishment of this outcome: <u>second project</u> -> dimensioning of a culvert for a small basin.

6. Know where to look for reliable hydrological and meteorological data.

General Abilities

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

By the end of the course the student would be able to analyze and compose given information.

To enrich his or her inductive reasoning

To work autonomously and in groups

(3) COURSE CONTENT

The theoretical part of the course includes surface waters and groundwater adopting thus a holistic view. The unifying idea is the hydrologic circle and the site is the water catchment. Special emphasis is given in the scientific method as demonstrated by the principle of conservation of mass and energy applied in the water balance calculations. Theory is complimented by the presentation of the challenges due to climate change, and the presentation of the new technological tools that are now made available to the science of Hydrology, Geographical Information Systems and Remote Sensing. Also, the main flood control works are presented and their functions explained.

In short the course contains the following

1. Hydrology science, Hydrologic circle, Hydrologic variables and units of measurement, Spatial and Temporal scales in Hydrology. Residence times. Water catchments, Water balance of a catchment.

2. Precipitation: Spatial characteristics of precipitations, their types (snow, hail, rain) and their integration over the basin (Thiessen polygons, equal precipitation curves). Rainfall graphs. Rainfall gradient. Frequency analysis. Gumbell distribution.

3. Evapotranspiration: Actual and potential evapotranspiration. Methods and formulas used for potential evaporation (mass transport methods, energy balance methods, hybrid methods). Thornwaite's method for actual evapotranspiration.

4. Hydrometry: Measurements of velocity and discharge in rivers and streams. The rating curve. Stage and discharge hydrographs. The Manning formula.

5. Floods. Frequency analysis and relevant distributions (Lognormal, LogPearson3).

6. Methods for computing design discharge: Rational Method, IDF curves, unit hydrograph.

(4) TEACHING AND LEARNING METHODS - ASSESSMENT

DELIVERY Lectures.

USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of ICT in teaching, laboratory education, communication with students	e-class Ppt presentations	
TEACHING METHODS The manner and methods of teaching are described in detail. The student's study hours for each learning activity are given as well as the hours of non-	Activity Lectures Homework	Semester Workload 26 24
directed study according to the principles of the ECTS	Total number of hours for the Course	50 hours (total student work- load)
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students	 Through quick and simple application given during the lecture. Weekly assignments (exercises) Two projects Final exams. 	ns with bonuses

(5) ATTACHED BIBLIOGRAPHY

Greek

- Στοιχεία Φυσικής Υδρολογίας, G. Hornberger et al. Εκδόσεις ΔΙΣΙΓΜΑ, 2018. Μετάφραση-Επιμέλεια Σ.Η.Καραλής
- Κουτσογιάννης Δ. Και Ξανθόπουλος Θ., «Τεχνική Υδρολογία», 3^η έκδοση, Τυπογραφείο ΕΜΠ, 1999.
- Τσακίρης Γ., «ΥΔΑΤΙΚΟΙ ΠΟΡΟΙ: Ι. Τεχνική Υδρολογία και Εισαγωγή στη Διαχείριση Υδατικών Πόρων», Εκδόσεις Συμμετρία, Αθήνα, 2013.

English

- 4. Chow Te Ven, Maidment David and Mays Larry, "Applied Hydrology," 2nd edition, McGraw-Hill, 2013.
- 5. Elements of Physical Hydrology, G. Hornberger et al., Johns Hopkins University press, 2016.
- 6. Maidment David, "Handbook of Hydrology," McGraw-Hill, 1993.
- 7. Hydrology: A science of Nature, Andre Musy & Cristophe Higy, CRS Press, 2011.
- 8. Hydrology in Practice, Elisabeth Shaw, 1994
- 9. Hydrology for engineers, linsley R., Kohler M., Paulhus J., McGraw-Hill, 1982.

periodicals

- 10. International Journal of Hydrology Science and Technology. Intescience Publishers
- 11. Sustainability Science, Springer

Links

12. UNESCO's International Hydrological Programme (IHP)

http://en.unesco.org/themes/water-security/hydrology

13. Hydrology links from USGS: http://www.nws.noaa.gov/om/hod/hydrolnk.html

GEO5070 – DATABASE PROGRAMMING

COURSE OUTLINE: GEO5070 - DATABASE PROGRAMMING

(1) GENERAL

SCHOOL	ENGINEERIN	G			
		DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN	G			
LEVEL OF STUDIES	Level 6				
COURSE CODE	GEO5070		SEMESTER	5 th	
COURSE TITLE	DATABASE P	ROGRAMMING	6		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	ponents of the course, e.g. lectures, are awarded for the whole of the WEEKLY CREDITS			CREDITS	
	Lectures 3 4				
	Laboratory exercises				
	Total 3 4			4	
COURSE TYPE	Specialized	general knowle	dge		
PREREQUISITE COURSES:	-				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes				
COURSE WEBSITE (URL)	https://eclas	s.uniwa.gr/cou	rses/TOP155/		

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The objectives of this course are:

- understanding the operation and structure of a relational database system
- the development of skills related to the design of relational databases
- programming databases using the SQL language
- Upon successful completion of the course the student will be able to:
- apply the main techniques for designing, modeling and implementation of simple databases
- use the main techniques of the SQL language In order to implement database systems
- understand and apply the advantages of relational databases in information management
- combine procedural and declarative programming techniques for management purposes and information processing in Geographic Information Systems

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search, analysis and synthesis of data and information, using the appropriate technologies
- Individual work
- Project design and manipulation
- Work in an interdisciplinary environment
- Promotion of creative and inductive thinking

(3) SYLLABUS

Types of databases. System's architecture. Entity-Relation model. Relational data model. Normalization. Data management operations. Relational algebra. Introduction to SQL. Tables, creating tables. Data types. The concept of primary key. Field properties. Value field integrity. Relationships between tables. Questions and criteria. Complex questions based on multiple tables. Views and aggregate functions. Calculated fields. Forms, reports, grouping and ordering in reports. Table management. Integrity restrictions. Hierarchical structures and networks. Procedures. Triggers. Database development in MySQL, MS-Access and phpMyAdmin. SQL extensions.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face			
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	exercises, etc.) are uploaded in the e-learning platform (e-class).			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	30		
	Laboratory practice	30		
The student's study hours for each learning	Study and analysis of	20		
activity are given as well as the hours of non- directed study according to the principles of the	bibliography			
ECTS	Essay writing	40		
	Course total	120		
STUDENT PERFORMANCE	I. Written final examination	that includes:		
EVALUATION	 Short answer questions 			
Description of the evaluation procedure	 Problem solving 			
	II. Midterm written examina	tions		
Specifically-defined evaluation criteria are	III. Projects			
given, and if and where they are accessible to students.				
students.	The examination material and the evaluation process			
	are announced to the students during the			
	lectures and are also posted on the course's website.			

(5) ATTACHED BIBLIOGRAPHY

In Greek

- 1. Κεχρής Ευάγγελος, 2015, Σχεσιακές βάσεις δεδομένων, Εκδόσεις Κριτική.
- 2. Μανωλόπουλος Ι., Παπαδόπουλος Α., 2006. Συστήματα Βάσεων Δεδομένων: θεωρία και πρακτική εφαρμογή. Εκδόσεις Νέων Τεχνολογιών.
- 3. Στεφανάκης Ε., 2010. Βάσεις Γεωγραφικών Δεδομένων και Συστήματα Γεωγραφικών Πληροφοριών. Εκδόσεις Παπασωτηρίου.
- 4. Elmasri R. Navathe S.B., 2007. Θεμελιώδεις Αρχές Συστημάτων Βάσεων Δεδομένων. Εκδόσεις Δίαυλος
- 5. Connolly T. M., Begg C. E., 2001. Συστήματα βάσεων δεδομένων. Εκδόσεις Ίων.

In English

- 6. Carter J., 2002. Database Design and Programming with Access, SQL, Visual Basic and ASP. McGraw Hill
- 7. Rockoff L., 2010. The Language of SQL: How to Access Data in Relational Databases. Cengage Learning PTR.

6th Semester

GEO6010 – INTRODUCTION TO DIGITAL IMAGE PROCESSING

COURSE OUTLINE: GEO6010 - INTRODUCTION TO DIGITAL IMAGE PROCESSING

(1) GENERAL

SCHOOL	ENGINEERIN	G		
	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN			
LEVEL OF STUDIES	Level 6	0		
COURSE CODE	GEO6010		SEMESTER	6 th
				v
COURSE TITLE	INTRODUCTI	ON TO DIGITA	L IMAGE PROCES	SING
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	components of the course, e.g. lectures, edits are awarded for the whole of the CREDITS			CREDITS
Lectures 3			3	4
Laboratory exercises			-	-
Total			3	4
COURSE TYPE	Specialized general knowledge			
PREREQUISITE COURSES:	: -			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	oreen			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes			
COURSE WEBSITE (URL)	https://eclas	s.uniwa.gr/cou	irses/GEO250/	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The objectives of this course are:

- understanding the basic concepts of digital image processing
- familiarity with the methods and mathematical models used for image analysis and processing
- the use of the above methods for the processing, enhancement, segmentation of digital
- image as well as for analyzing and extracting semantic information for image classification and pattern recognition applications
- the development of skills related to the implementation of the above methods in a programming environment

Upon successful completion of the course the student will be able to:

- understand the main features of digital image processing
- know the main tools, techniques, limitations and open problems in digital image processing
- programmatically implement methods and techniques of digital image processing

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search, analysis and synthesis of data and information, using the appropriate technologies
- Individual work
- Project design and manipulation
- Work in an interdisciplinary environment
- Promotion of creative and inductive thinking

(3) SYLLABUS

Introductory concepts. Image formats and representation. Image digitization. Basic principles of digital images. Numerical and logical operations. Point transformations. Histogram balancing and thresholding techniques. Two-dimensional filters and transformations. Line detection, edges outlines and image areas. Mathematical morphology. Image segmentation. Image analysis, feature extraction, color and texture, points of interest. Coding and image compression. Pattern recognition techniques in digital images.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	exercises, etc.) are uploaded in the e-learning platform (e-class).		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	30	
	Laboratory practice	30	
The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the	Study and analysis of bibliography	20	
ECTS	Essay writing	40	
	Course total	120	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	I. Written final examination that includes: - Short answer questions - Problem solving II. Midterm written examinations III. Projects		

(5) ATTACHED BIBLIOGRAPHY

In Greek

- Ν. Παπαμάρκος, 2013,Ψηφιακή επεξεργασία και ανάλυση εικόνας, Εκδότης Αφοι Παπαμάρκου Ο.Ε.
- 2. R. C. Gonzalez and R. E. Woods, 2018, Ψηφιακή Επεξεργασία Εικόνας, Εκδόσεις Τζιόλα.
- 3. Ι. Πήτας, 2010, Ψηφιακή Επεξεργασία Εικόνας, Εκδότης Ιωάννης Πήτας.
- 4. Ι. Ν. Έλληνας, 2010, Ψηφιακή Επεξεργασία Εικόνας και Βίντεο, Εκδότης Ιωάννης Έλληνας.

In English

- 5. C. Solomon, T. Breckon, 2010, Fundamentals of Digital Image Processing, Wiley.
- 6. M. Petrou and C. Petrou, 2010, Image Processing: The Fundamentals, Wiley.

GEO6020 – URBAN PLANNING

COURSE OUTLINE: GEO6020 – URBAN PLANNING

(1) GENERAL

SCHOOL	SCHOOL OF I	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMEN	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN	G			
LEVEL OF STUDIES	Undergradua	ate			
COURSE CODE	GEO6020		SEMESTER 6 th	I	
COURSE TITLE	URBAN PLAN	NING			
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	nents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHIN GHOURS	CREDITS	
Lectures			2	3	
Lab exercises			2	2	
		Total	4	5	
COURSE TYPE	General back	kground		•	
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:					
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)				
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The course highlights the challenges urban planning has to address. Emphasis is placed on analysing the basic principles and tools of urban planning and the regulatory framework of urban planning in Greece. A historical overview of the models and typologies of cities at the international, European and national levels is performed. The evolution of the city and urban planning notions is also examined. The current institutional/legal framework for urban planning in Greece is also discussed in relation to the effects of the economic crisis. The procedures for the preparation, approval and implementation of urban studies, building regulations, and current licensing procedures are analysed. At the same time, the various types of plans and studies in Greece at the different levels of planning are discussed. Moreover, the role and responsibilities of public and private bodies involved and the importance of participatory decision-making in urban planning are recorded and highlighted. Finally, the use and importance of modern technologies and cutting-edge techniques in urban planning are pointed out.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Decision-making
- Working independently
- Teamwork
- Criticism and self-criticism
- Production of free, creative and inductive thinking

(3) SYLLABUS

- 1. City and urban planning: Historical analysis.
- 2. Urban development models and city typology.
- 3. Analysis of basic concepts (settlement, city, urbanization, functions, socio-economic parameters, etc.)
- 4. Urban land uses. Urban planning problems.
- 5. Urban studies and urban planning.
- 6. Implementation of urban planning studies.
- 7. Building regulations and other regulatory legislation for construction. Approvalbuilding permit and urban planning provisions.
- 8. Analysis of the evolution of the legal framework for urban planning in Greece. Design levels and types of plans/ studies.
- 9. Public and private bodies involved in urban planning. Participation in decision-making in urban planning.
- 10. Modern technologies and urban planning: Cartographic archives and cutting-edge techniques.
- 11. The role of topographers / geoinformatics engineers in urban studies.

(4) TEACHING and LEARNING METH	IODS - EVALUATION			
DELIVERY	Face-to-Face			
USE OF INFORMATION	• Web search (literature rev	view and data sources)		
ANDCOMMUNICATIONS	• Utilization of E-class UNIW	/A platform (file exchange		
TECHNOLOGY	among professors and stu	dents)		
Use of ICT in teaching, laboratory education,	• Email			
communication with students	Office software (word, pre	esentations, spreadsheets		
	editors)			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	39 (13 X 4)		
	Study and analysis of	26 (13 X 2)		
The student's study hours for each learning	bibliography			
activity are given as well as the hours of non- directed study according to the principles of the	Preparation of essays	65		
ECTS	Study	50		
	Course total	180		
STUDENT PERFORMANCE EVALUATION	Language of evaluation: Gree	ek		
Description of the evaluation procedure	- Methods of evaluation:			
	• Written exam at the	end of the semester		
Specifically-defined evaluation criteria are				
given, and if and where they are accessible to students.				
	- Study/ Essay (Essay on the theoretical and practical			
	objectives of the course)			

(5) ATTACHED BIBLIOGRAPHY

- Jenks M., Dempsey, N. (2005). Future forms and design for sustainable cities. Routledge.
- Rydin Y. (2012). Governing for sustainable urban development. Routledge.
- Wheeler S.M., Beatley T. (Eds.). (2014). Sustainable urban development reader. Routledge.
- European Commission, 'A new Partnership for Cohesion; Convergence, Competitiveness, Cooperation (7th report on economic and social cohesion', European Communities, 2017.
- European Commission, 'ESDP, European Spatial Development Perspective', European Communities, 1999.
- Hall P. 'Urban and Regional Planning'. 4th Edition. Routledge. London and New York, 2002.
- OECD, 'Towards a New Role for Spatial Planning, OECD Publications, 2001.
- Reimer M., Getimis, P., Blotevogel H. 'Spatial Planning Systems and Practices in Europe. A Comparative Perspective on Continuity and Changes', (eds), Routledge, New York, 2014.

Websites

- ECTP-CEU (European Council of Spatial Planners Conseil européen des urbanistes), <u>http://www.ectp-ceu.eu/</u>
- European Commission / Regional Policy, <u>http://ec.europa.eu/regional_policy/index_el.cfm/</u>
- ESPON, (European Observation Network for Territorial Development and Cohesion), <u>http://www.espon.eu/main/</u>
- ISOCARP (International Society of City and Regional Planners), <u>http://www.isocarp.org/</u>

 United Nations Development Programme , <u>http://www.undp.org/content/undp/en/home.html/</u>

GEO6030 – REMOTE SENSING II

COURSE OUTLINE: GEO6030 - REMOTE SENSING II

(1) GENERAL

SCHOOL	ENGINEERING	ENGINEERING			
DEPARTMENT	SURVEYING AND GEOIN	IFOI	RMATICS ENGI	NEE	RING
LEVEL OF STUDIES	Undergraduate – Level	6			
COURSE CODE	GEO6030 SEMES	STEF	R OF STUDIES	6 th	
COURSE TITLE	REMOTE SENSING II				
INDEPENDENT TEACHI in case the credits are awarded in discrete p Laboratory Exercises, etc. If the credits are awar enter the weekly teaching hours	te parts of the course e.g. Lectures, WEEKLY HOURS CREDIT warded uniformly for the entire course, DIDASKALIAS UNITS				
	Lectures 2 3				
	Laboratory Exercises 1			1	
	TOTAL				4
TYPE OF COURSE	Compulsory				
PREREQUISITE COURSES:	REMOTE SENSING I				
C.LAUSSA OF TEACHING AND EXAMINATIONS:	Greek				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES (English)				
ONLINE COURSE PAGE(URL)	https://eclass.uniwa.gr/courses/GEO603/				

(2) LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course are described, the specific knowledge, skills and abilities of an appropriate level that students will acquire after the successful completion of the course.

Objectives of the course are the following:

- Application of satellite image evaluation techniques
- Retrieval and processing of satellite data by online platforms
- Programming methods in specialized remote sensing software
- Visualization of remote sensing data analysis results
- Photo interpretation of images in topographical and cadastral applications

General Competencies

Taking into account the general skills that the graduate must have acquired (as these are listed in the Diploma Supplement and listed below) which / which of them is the subject of the course intended for?.

- Search, analysis and synthesis of data and information, using the necessary technologies
- Decision-making
- Autonomous work
- Project planning and management

(3) COURSE CONTENT

- Supervised, unsupervised and object-oriented classification of multispectral satellite images
- Processing images and programming
- Neural networks, Artificial Intelligence and Machine Learning in Remote Sensing
- Remote sensing applications in urban and rural areas
- The use of Remote Sensing in environmental applications of soil and water quality
- Operational applications of Remote Sensing
- Retrieval and processing of satellite data from USGS and COPERNICUS web platforms
- Retrieval and processing of historical data from the platforms of the Army Geographical Service and the Greek Land Registry
- Interferometry and radar applications
- Digital Soil Models and Remote Sensing
- Remote Sensing and Geographic Information Systems
- Photo-interpretation of historical data in property status surveys, forest maps, topographical and cadastral applications.

(4) TEACHING AND LEARNING METHODS - EVALUATION

DELIVERY.	Face to face		
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of TEIs in Teaching, Laboratory Education, Communication with students	Lectures: Use of ICT (power point presentations) Laboratory exercises: use of specialized software for the analysis of digital image data. Communication: use of asynchronous eclass e-learning platform		
TEACHING ORGANIZATION The way and methods of teaching are described in detail. The student's study hours for each learning activity are listed, as well as the hours of a non- guided study according to the principles of ECTS	ActivityLecturesStudy & analysis ofbibliographyLaboratory ExercisesTotal Course	Semester Workload 60 60 30 150	
STUDENT EVALUATION Description of the evaluation process Explicitly defined assessment criteria are mentioned and if and where they are accessible to students.	 Multiple-choice final written exam and development questions (70%) 		

Language of the examination: Greek (English if needed, e.g., Erasmus+students)

(5) RECOMMENTED BIBLIOGRAPHY

Greek:

- 4. Skianis Eim. G., Nikolakopoulos G. K., Vaiopoulos A. D. 2012. "Remote Sensing" ION Publications 336sel.
- 5. Kartalis K., C., 2007, Fidas, "Principles & Applications of Satellite Remote Sensing", V. Gkiourdas Ekdotiki, Athens.
- 6. Mertikas S.P., 2006, "Remote Sensing and Digital Image Analysis", ION Publications

English:

- 6. Campbell J.B., 2006. Introduction to Remote Sensing, The Guilford Press, New York.
- 7. Cracknell A.P., L. Hayes, 2007. Introduction to Remote Sensing, CRC Press.
- 8. Jensen J.R., 2005. *Introductory Digital Image Processing: A Remote Sensing Perspective*. Prentice Hall.
- 9. Lillesand S. M.,R.W. Kiefer, J.W. Chipman, 2007. *Remote Sensing and Image Interpretation*. Wiley.
- 10. Mather P., 2004. *Computer Processing of Remotely Sensed Images: An Introduction*. Wiley.
- 11. Sabins F.F., 1997. *Remote Sensing: Principles and Interpretation*, W. H. Freeman & Co., New York.
- 12. Schowengerdt R.A., 2006. *Remote Sensing: Models and Methods for Image Processing*, Academic Press.

GEO6040 – SPATIAL DECISION SUPPORT SYSTEMS

COURSE SYLLABUS: GEO6040 – SPATIAL DECISION SUPPORT SYSTEMS

(1)	GENERAL
1-1	

SCHOOL	SCHOOL OF ENGINEERING				
ACADEMIC UNIT	DEPA	ARTMENT OF	SURVEYING AND G	EOINFORMATIC	S ENGINEERING
LEVEL OF STUDIES	MSc.	1			
COURSE CODE	GEO	6040	SE	EMESTER 6 th	
COURSE TITLE	Spat	ial Decision	Support Systems		
if credits are awarded for separ laboratory exercises, etc. If th	ENT TEACHING ACTIVITIES WEEKLY reparate components of the course, e.g. lectures, If the credits are awarded for the whole of the rekly teaching hours and the total credits HOURS				CREDITS
	Lectures 3 3				3
	Lab exercises 1 1				
	TOTALS 4 4				4
COURSE T	OURSE TYPE specialized general knowledge, skills development			ent	
PREREQUISITE COURS	ES:	Geographic	Information System	ns and Science	
LANGUAGE OF INSTRUCTIO	ind	Greek			
IS THE COURSE OFFERED ERASMUS STUDEN		Offered (English)			
COURSE WEBSITE (U	RL)	https://eclass.uniwa.gr/modules/auth/opencourses.php?fc=75			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The aim of the course is to present the necessary concepts to students, so that they are able to highlight Geographic Information Systems as a mechanism for supporting and planning spatial decisions through the theory, methods, techniques, and applications of spatial analysis, in continuous and discontinuous spatial data models, using modern tools, methods, and techniques in an ever-changing competitive environment.

Because by its nature the science of Geographical Information is an interdisciplinary subject, which in addition to the high standards of its theoretical existence has a large section for the application of its methods, the course material is structured in two distinct but interconnected sections (theoretical and applied). It aims at a deeper understanding of both the substance and the methodology, as well as the management of geospatial information in the appropriate way, which leads to its emergence, as a key factor influencing decision-making with parameters that depend on natural and man-made phenomena. At the same time, the knowledge and skills acquired by the students in the subject do not lead to a sterile and strictly theoretical training, but through a known and accessible to the average of the students in the 7th level of complexity of the subjects raised, they are faced with issues. to be faced in the labor market. In addition, they receive all those cognitive supplies and skills, which in combination with the more specific cognitive subjects of the Science of Geographical Information contained in their curriculum, acquire the opportunity to claim their place in the next level (8th) of their studies.

According to the design of the content of the specific subject, students cognitively approach the following:

- a) The spatial relations between continuous and discontinuous spatial entities
- b) The models of spatial distributions
- c) The identification of spatial patterns with specific characteristics and properties
- d) The critical evaluation of spatial analysis methods.

Therefore, the objectives of this subject matter extend to a description of those who have successfully attended this subject, which has the following characteristics:

a) The assimilation of theoretical and objective knowledge in terms of analytical and synthetic treatment of geospatial information that leads to spatial decisions.

b) The development of mental and practical skills in solving spatial analysis problems.

c) The development of skills through the synthetic creation and support of arguments during the spatial transformation, reinforcing in terms of responsibility and autonomy for the acquisition of sufficient capacity for further professional and personal development.

d) The development of possibilities of a professional approach to the object through the use of the knowledge and understanding acquired during the design and implementation of applications that complete a spatial decision-making system.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search, analysis, and synthesis of data and information, using the necessary technologies
- Adaptation to new situations
- Decision making
- Autonomous work
- Teamwork
- Exercise criticism and self-criticism
- Promoting free, creative, and inductive thinking

(3) SYLLABUS

Theoretical Part of the Course

- 1. The conceptual framework of spatial analysis using GIS
 - Terminology
 - Basic principles and methods
 - Continuous and discontinuous geospatial data models
 - Analysis of the European Directive (2007/2 / EC INSPIRE) and the corresponding Greek one (Law 3882/2010) for the National Spatial Data Infrastructure.
 - Spatial Relations
 - Spatial Statistics (distance, density, regression and autocorrelation)
- 2. Spatial Analysis Methodology in Discontinuous and Continuous Spatial Data Models
 - Geographic Data Interactions
 - The concept of entity in spatial analysis, characteristics and properties
 - Spatial queries spatial queries
 - The analysis categories for discontinuous entities
 - The analysis categories for continuous entities
 - Logical operations on the characteristics of one or more entities
 - Functions in features of multiple entities that overlap in space.

- Spatial components when retrieving multiple properties in single geospatial entities
- Methods of generalization and simplification of entities
- 3. Spatial Analysis Operations
 - Transactions between levels of geospatial information.
 - Digital background update.
 - Remove digital background features.
 - Peripheral Zones
 - Analysis with thematic criteria.
 - Change of cartographic information with geometric and thematic criteria.
 - Generalization and simplification operations
- 4. Support for spatial decisions in GIS:
 - Introduction to the basic concepts
 - General principles and structures of decision-making systems, components.
 - Demarcation of spatial problems.
 - Decision making procedures.
 - The multi-criteria analysis
 - Creation of location models with automated processes through programming.
- 5. GIS applications in Greece: Detailed presentation of the design of the structure and their operation.
- 6. GIS applications internationally. Specifications, standards, references to actions of international organizations for geographical information

Applied Part of the Course

- Applications of Spatial Analysis functions using modern commercial and free / open source GIS software.
- Composition of applications oriented to spatial decision making
- Planning principles in GIS and creation of location-allocation models for human activities.
- Geospatial information diffusion functions on the web.
- Interoperability

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-Face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Web search (literature review and data sources) Utilization of E-class UNIWA platform (file exchange among professors and students) Use of email Use of specialized software (both commercial and open source) for the manipulation, editing and mapping of the geospatial data Use of Office software (word, presentations, spreadsheets) 		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described	Lectures	39	
in detail.	Study and analysis of bibliography	25	
The student's study hours for each learning activity	Study elaboration	35	
are given as well as the hours of non-directed study	Lab exercise	13	
according to the principles of the ECTS	Seminar (*)	8	

	(*)Specialized lecture on issues that fall within the subject matter, by scientists in the field Course total (30 hours of workload per credit unit)	
STUDENT PERFORMANCE	Language of Evaluation: Greek	
EVALUATION	Evaluation Methods:	
Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students	 Written exam at the end of the choice, short development and exercises) Homework evaluation (develop topic and commentary of scient Evaluation of laboratory work (a project for management and ar environment) Oral presentation of work (Ms of the theoretical topic) 	problem-solving ment of theoretical fic articles gradual development of alysis in a GIS

(5) ATTACHED BIBLIOGRAPHY

Books

- 1. Pappas, V, 2011. GIS in Spatial Planning: Scientific Edition of the University of Patra (Greek language)
- 2. Zisou, A, 2010. ArcGIS Extensions: Spatial Analyst, 3D Analyst, Theory and Practice, Publication in Greek language, by Stamoulis Editions
- 3. E. Stefanakis, 2010. "Geographical Databases and GIS". 2nd edition. Publication in Greek language, by Papasotiriou Editions.
- 4. Karnavou, E., 2002. GIS and Spatial Data Infrastructure for the Contemporary Greece, Publication in Greek language, by Observer Editions
- 5. Koutsopoulos K., 2002. GIS and Spatial Analysis, Publication in Greek language, by Papasotiriou Editions.
- 6. Tsatsaris, A., Katsios, I., 2020, GIS in Spatial Analysis of Continuous Entities. Notes in Greek language.
- 7. Alibrandi, M, Fitzpatrick, 2003, GIS in the classroom: Using Geographic Information Systems in social studies and environmental science, Portsmouth, NH: Heinemann
- 8. DeMers, M, 2002, GIS modeling in raster, New York: Wiley.
- 9. Hunsaker, C, 2001, Spatial uncertainty in ecology: implications for remote sensing and GIS applications, New York: Springer.
- 10. Lawson, A, Denison, D, 2002, Spatial cluster modeling, Boca Raton, FL : Chapman & Hall/CRC
- 11. Malczewski, J, 1999, GIS and multicriteria decision analysis New York: Wiley.
- 12. Stillwell, J, Clarke, G, 2004, Applied GIS and spatial analysis, Wiley

Web pages

- 1. <u>http://www.csiss.org/</u> (Center for Spatially Integrated Social Science)
- 2. <u>http://teachspatial.org/</u> (Resources for Spatial Teaching & Learning)

- 3. <u>http://gispopsci.org/software/</u> (Advanced Spatial Analysis program)
- 4. <u>http://www.spatialanalysisonline.com/</u> (Geospatial Analysis A comprehensive guide)
- 5. <u>http://www.gitta.info/website/en/html/index.html</u> (Geographic Information Technology Training Alliance)

Scientific Journals

- 6. International Journal of Geographical Information Science, Taylor & Francis
- 7. Journal of Spatial Science, Taylor & Francis
- 8. Geoinformatica, Springer
- 9. Journal of Geographical Systems, Springer
- 10. GISciences & Remote Sensing, Bellwether Publishing, Ltd.
- 11. Journal of Geographic Information System, Scientific Research
- 12. ISPRS-International Journal of Geo-Information (IJGI is an open access journal of MDPI)

GEO6050 – SURVEYING FIELD COURSE

COURSE OUTLINE: GEO6050 - SURVEYING FIELD COURSE

(1) GENERAL

SCHOOL ENGINEERING				
				ORMATICS
	ENGINEERING			
LEVEL OF STUDIES	Graduate – L	evel 6		
COURSE CODE	GEO6050		SEMESTER 6	th
COURSE TITLE	SURVEYING	FIELD COURSE		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar	ponents of the course, e.g. lectures, WEEKLY		CREDITS	
course, give the weekly teaching ho	ours and the total o	credits	HOURS	
	Lectures and Labs 4(2/2) 5			
	TOTAL 4 5			
COURSE TYPE	Special back	ground		
PREREQUISITE COURSES:	GEO302-COI	NSTRUCTION SU	JRVEYING	
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Can be taugł	nt in English		
COURSE WEBSITE (URL)				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

- Planning Topographic Surveys Gathering the Data
- Field Methods for Topographic Mapping. General Procedures, digital surveying Using terrestrial and satellite methods, coordinating field and office procedures for digital survey systems
- **Hydrographic Survey.** Introduction, tides, instrumentation for hydro graphic survey, procedures for hydro graphic survey, hydro graphic charts
- Review of Greek Surveying Standards and Specifications. Specifications, Equipment Specifications

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Students will be able to manage all stages of the work leading to a complete surveying project at a professional level. The course also aims to develop critical thinking whereby students must address solutions to engineering problems that arise during a typical surveying project.

(3) SYLLABUS

- Planning Topographic Surveys Gathering the Data,
- Field Methods for Topographic Mapping,
- Hydrographic Survey,
- Greek Surveying Standards and Specifications

(4) TEACHING and LEARNING METHODS - EVALUATION

Face-to-face, Distance learning, etc.	Face-to-face	
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 eclass (exchange of information and digital data between tutors and students) Use of software Use of programming environment for preparing projects. 	
	- Use of Surveying software	
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are	Lectures	52
described in detail.		
described in detail.	Laboratory / Exercises	48
The student's study hours for each learning	Laboratory / Exercises	48
	Laboratory / Exercises Non-directed study	48
The student's study hours for each learning activity are given as well as the hours of non-		

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- 1. Allan A.L., Hollwey J.R., Maynes J.H.B., Amin A., 1980. Practical Field Surveying and Computations. Heinmann, Portsmouth, NH.
- 2. Andersen J. M., Mikhail E. M., 1998. Surveying: Theory and Practice. 7th edition, McGraw-Hill, New York.
- 3. Blachut T., Chrzanowski A., Saastamoinen J., 1979. Urban Surveying and Mapping. Springer, Berlin.

- 4. Buckner R. B., 1983. Surveying measurements and their analysis. Landmark Enterprises, Cordova, CA.
- 5. Johnson A., 2004. Plane and Geodetic Surveying. The Management of Control Networks. Spon Press, London & New York.
- 6. King R. W., Masters E. G., Rizos C., Stolz A., Collins J., 1987. Surveying with Global Positioning System FERD. Dümmler Verlag, Bonn.
- 7. Shepherd F. A., 1977. Engineering Surveying. Edward Arnold, London.
- 8. Schofield W., Breach M., 2007. Engineering Surveying. Butterworth-Heinemann. Elsevier.
- *9.* Uren J., Price W. F., 2005. Surveying for Engineers. 4th edition, MacMillan Press, London

GEO6060 – SPATIAL ANALYSIS

COURSE OUTLINE: GEO6060 - SPATIAL ANALYSIS

(1) GENERAL

SCHOOL	ENGINEERIN	G		
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERING			
LEVEL OF STUDIES	Level 6			
COURSE CODE	GEO6060		SEMESTER	6 th
COURSE TITLE	SPATIAL ANALYSIS			
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	are awarded for the whole of the WEEKLY CREDITS			CREDITS
	Lectures 3 3			3
	Laboratory exercises 1 1		1	
	Total 4 4		4	
COURSE TYPE	Skills develo	pment		
PREREQUISITE COURSES:	-			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	yes			
	https://eclas c=75	s.uniwa.gr/moo	dules/auth/open	courses.php?f

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

After completing the course, the students will be able to:

- draw samples from lists or maps
- analyze spatial data using Descriptive and Inferential Statistics
- apply statistical analysis in a GIS environment (GIS)
- solve geographical problems using appropriate software
- understand and discuss scientific publications which involve statistical analysis
- select the appropriate method of spatial analysis according to the nature of the problem and the data properties

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Working independently

(3) SYLLABUS

- 1. Basic concepts: types of data, organization and properties of geographical data
- 2. Geographical data and scales of measurement
- 3. Geographical data collection: primary and secondary data, methods for data collection, spatial sampling techniques
- 4. Description of geographical data: frequency distributions, crosstabulations, visualization, measures of central tendency and dispersion, geostatistical indices, exploratory spatial data analysis
- 5. Probability distributions, hypothesis testing, statistical tests: t, ANOVA, X²
- 6. Spatial patterns, point pattern analysis, mapping spatial clusters
- 7. Correlation analysis of quantitative and qualitative data, regression analysis, multiple regression, spatial autocorrelation indices, spatial regression
- 8. Introduction to multivariate methods for geographical data analysis (factor analysis cluster analysis, discriminant analysis)

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION	Powerpoint for presentations, the course website (e-		
ANDCOMMUNICATIONS	class) is used for uploading course material and students'		
TECHNOLOGY	assignments. Statistical analy	sis software as well as	
Use of ICT in teaching, laboratory education,			
communication with students	teaching and carrying out exe	ercises and projects.	
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	39	
described in detail.	Laboratory practice	13	
The student's study hours for each learning	Study and analysis of	58	
activity are given as well as the hours of non- directed study according to the principles of the	bibliography		
ECTS	Essay writing	40	
	Course total	150	

STUDENT PERFORMANCE	Language of evaluation: Greek or English	
EVALUATION		
Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students.		

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

In Greek:

- 1. Iliopoulou P. 2015. Spatial Anlaysis. [e-book] Athens Hellenic Academic Libraries Link (Heal Link). Available at *http://hdl.handle.net/11419/2059*
- 2. Koutsopoulos K. 2009. Essay on spatial analysis, Vol. I and II, Papassotiriou, Athens.

In English:

- 1. Fotheringham S.A., Brudson C. and Charlton M. 2000. Quantitative Geography-Perspectives on Spatial Data Analysis, London: SAGE Publications
- 2. O' Sullivan D. and Unwin D.J. 2010. Geographic Information Analysis, John Wiley
- 3. Robinson G.M. 1998. Methods and Techniques in Human Geography, Wiley
- 4. Rogerson P.A. 2004. Statistical Methods for Geography, Sage Publications
- 5. Wong D. W. S. and Lee J. (2005). Statistical Analysis of Geographic Information with ArcView GIS and ArcGIS, Wiley.

- Related academic journals:

- Geographical Analysis, Wiley
- Applied Spatial Analysis and Policy, Springer

GEO6070 – SPATIAL DATABASES AND DIGITAL – CARTOGRAPHY

COURSE OUTLINE: GEO6070 - SPATIAL DATABASES AND DIGITAL - CARTOGRAPHY

(1) GENERAL

SCHOOL	School of Engineering				
ACADEMIC UNIT	Surveying and Geoinformation Engineering				
LEVEL OF STUDIES	Undergraduate – Level 6				
COURSE CODE	GEO6070 SEMESTER 6th				
COURSE TITLE	Spatial Databases and Digital Cartography				
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	weekly WEEKLY CREDITS		CREDITS		
		Theory	3		3
	Laborato	ries Exercises	2		1
	Total 5 4				
COURSE TYPE	Special background (special knowledge in Spatial Databases), specialization of general knowledge (those of Cartography) and development of skills (creation of SDB, creation of digital maps, using specialized programs and equipment). Mandatory			dge (those of tion of SDB,	
PREREQUISITE COURSES:	There are no prerequisite courses.				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:					
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES (In Engli	sh and French)			
COURSE WEBSITE (URL)	https://eclas	s.teiath.gr/cou	irses/TOP106	5/	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The course aims at

A.Knowledge

• Understanding, acquiring knowledge and learning all the stages of creating digital cartographic / spatial data, digital maps and Spatial Databases.

B.Skills

- Familiarity with their applications in specific examples.
- To acquire skills and abilities for the design, creation, creation of metadata and control of Spatial Databases, Web Mapping and in satellite mapping

C.Abilities

• To develop skills for the application of techniques for the analysis needs and the creation of studies for the development of Spatial Databases and their integration into existing or in development spatial Information Systems in any environment or

requirement and by selecting the best combinations of tools and techniques

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Taking into account the general skills that the graduate must have acquired, the course aims at:

- 1. In understanding the design, development, implementation and control of BXD. In the search, analysis and synthesis of digital spatial data and information, using the necessary technologies for the creation of digital maps and digital spatial / cartographic information on the Internet.
- 2. To adapt to new situations that require the creation of maps in a very short time (e.g., in case of natural disasters), or the use of new types of cartographic data (e.g., very high-resolution satellite images) or the use of new techniques and equipment (e.g., unmanned aerial vehicles and vehicles).
- 3. In making decisions regarding the correct choice of data, techniques, projections, basic graphics and aesthetic features that compose the quality of a digital map and the correct structure of a SDB.
- 4. In autonomous work through the theoretical development and practical elaboration of issues related to cartographic concepts and practices with the aim of developing skills necessary for BXD development studies, digital maps and spatial data infrastructures.
- 5. The ability to work in an international environment supported by learning both "standardized knowledge" of digital cartography and SDB taught in most universities around the world and by using and learning both English and French "cartography" / SDB terminology.
- 6. In the work in an interdisciplinary environment supported by the nature of the course of SDB and digital cartography that is directly related to road construction, plumbing, environmental protection, three-dimensional representation of objects, etc.
- 7. In the production of new research ideas that is supported and developed through a) individual and group work but also b) with the information about the research programs of the Department in relation to SDB and digital cartography and the possibilities of students' participation in them.
- 8. In the design and management of development projects, information and control of BXD and digital maps.
- 9. Demonstrating social, professional and ethical responsibility in data and software copyright issues.
- 10. In the exercise of criticism and self-criticism through the presentation day of the semester papers (individual and group).
- 11. In the promotion of free, creative and inductive thinking.

(3) SYLLABUS

Theoretical part- Lectures

Introduction. Basic concepts. Principles. Terminology and "terms". Interconnected and overlapping scientific fields, sciences and techniques. Cartographic, Geographical, Geographical, Spatial and Geospatial Data.

Digital Cartography and Visualization / Visualization of Spatio-temporal Data. Bibliographic resources - Internet resources - "Open" Courses - Free data - "Open source" software.

Organizations, scientific associations and organizations related to digital cartography and its applications.

Spatial Data, Geographic Information Systems, and Spatial Databases. Types & Structures of Digital Spatial & Cartographic Data - Characteristics of Spatial Data.

Connection of Spatial Data with other Data - introductory concepts. SDB and virtual and augmented reality.

Software & Equipment. Sources & Methods of Production of 2D and 3D Spatial Data - Volunteered Geographic Information - Crowdsourcing.

Spatial Data Producers - National and International Infrastructure - INSPIRE.

Georeferencing Data. Alphanumeric & Spatial Data Management Databases & Systems. SD / SDB design and implementation levels. Similarities and differences of Alphanumeric Bases and Spatial Data. Conceptual Design SDB & CASE- Tools. Spatial-temporal modeling. Topology. Logical Physics Design SDB and Models. Interconnection of SDB & SAB and SDB with other Data. Metadata and data dictionaries.

Quality of Digital Spatial Data and SDB. Error detection. Quality parameters. Quality check. Compatibility of Spatial Data (data) - Software (Software) - Devices / equipment (hardware) - Standards for the exchange of Spatial Data. Compression of Digital Spatial Data.

Digital Cartography and Sustainable Development. Digital Atlases and Multimedia Cartography.

New technologies and devices and their Applications in Digital Cartography and SDB (smartphones, tablets, handheld GPS / GIS, UAV, etc.

Dynamic Cartography (Animated Cartography) - Underground Digital Cartography - Interior Cartography. Network cartography.

Cartographic Generalization in Digital Spatial Data.

Analysis, Design, Implementation, Control and Information of SDB. Production of Analog Maps with digital data.

Digital Maps and Web Mapping Applications - Web Mapping

Automatic Navigation Systems, Mobile Cartography, electronic navigators. Location Based Marketing (LBM), SDB and digital cartography.

Location Based Services (LBS). Digital Ground Models - Buildings - Surface - Cities - City GML standard.

Cartography & Applications Using Satellite Images - Satellite Cartography.

Digital Geotags and SDB. Digital cartography and crisis and disaster management.

Virtual and Augmented Reality: its use in digital cartography.

Laboratory Exercises

. Project management SDB - Digital Cartography.

. Conceptual models.

. Election of cartographic / spatial entities.

. Logical SDB models.

. Import and visualize raster (vector) and vector (vector) data in
GIS software.
. Geo-reference map of G.Y.S. and satellite image.
. Geobase creation, digitization and creation of simple and complex spatial objects.
. Correlation of spatial and alphanumeric databases.
. SDB topology: creation and control.
. Digital terrain, building and surface models.
. WEB MAPPING, creating a map on the internet
. Dynamic Cartography Exercise.

- . Virtual and Augmented Reality: its use in digital cartography.
- . Special issues.

(4) TEACHING and LEARNING METHODS - EVALUATION

The manage and methods of teaching and	software, video, use of		
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students Slides, use of softwares, software, v internet, smart phones, Tablet, GPS TEACHING METHODS Activity S	software, video, use of 5 / GIS handheld.		
reductions, etc.) USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students TEACHING METHODS Activity S	video, use of 6 / GIS handheld.		
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students Slides, use of softwares, software, with students TEACHING METHODS Activity S	, GIS handheld.		
ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students TEACHING METHODS Activity S	, GIS handheld.		
TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students TEACHING METHODS Activity S			
Use of ICT in teaching, laboratory education, communication with students TEACHING METHODS Activity S	Semester workload		
communication with students TEACHING METHODS Activity S	Semester workload		
	emester workload		
The manner and methods of teaching are	cincster workload		
The manner and methods of teaching are Lectures 13 X 3	= 39 hours		
	s preparation of		
The student's study hours for each learning speakers) questi	ons by groups		
activity are given as well as the hours of non- directed study according to the principles of the Laboratory Exercises / Field 2 X 13	= 26 hours + 6		
	ration = 32 hours of		
teachi	ng+preparation		
Training visits 5 hours 5 hour	°S		
Elaboration of a group study 10 hou	urs		
(project)			
Preparation of an individual 7 hour	S		
study			
Educational presentation of ⁵ hour	rs (preparation)		
the works			
Course preparation / weekly 20 hou	ırs		
study			
Course total 120 ho	ours		
STUDENT PERFORMANCE Language of assessment:			
EVALUATION Greek or English or French (for ERAS	SMUS students)		
Description of the evaluation procedure Evaluation methods:			
Written examination at the	end of the semester:		
Specifically-defined evaluation criteria are 60%	-		
given, and if and where they are accessible to students. • Laboratory Exercises / Field	• Laboratory Exercises / Field Exercises: 20%		
Personal study and presentation: 20			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Shashi Shekhar and Sanjay Chawla, 2003, Spatial Databases: A Tour, Prentice Hall.
- Rigaux & Scholl & Voisard, 2001, Spatial Dαtabases, Morgan Kaufmann.
- Albert K. W. Yeung, G. Brent Hall, 2007, Spatial Database Systems: Design, Implementation and Project Management, Springer.
- Sandra Lach Arlinghaus , Joseph J. Kerski ,2014, Spatial mathematics-Theory and practice through mapping , Taylor & Francis Group , Boca Raton, FL .
- Raghu Ramakrishnan, Johannes Gehrke , 2003, Database management systems ,third edition , McGraw-Hill Higher Education , 1221 Avenue of the Americas, NY , US.
- Philippe Rigaux, Michel Scholl, Agnes Voisard, 2002, Spatial databases with applications to GIS, Elsevier, 340 Pine st., San Francisco, CA, US.
- Robert Laurini , Derek Thomson , 1999 , Fundamentals of spatial information systems, 7th printing , Academic Press , San Diego , CA , US .
- Albert K.W. Yeung , Brent G. Hall , 2007 , Spatial Database Systems: Design, Implementation and Project Management , Springer.
- Ramez Elmasri, Shamkant B. Navathe, 2007, Θεμελιώδης αρχές συστημάτων βάσεων δεδομένων, έκτη έκδοση, Εκδόσεις Δίαυλος, Μαυρομιχάλη 72-74, Αθήνα.
- Αθανάσιος Σταυρακούδης, 2010, Βάσεις δεσομένων και SQL Μια πρακτική προσέγγιση, Εκδόσεις Κλειδάριθμος, Στουρνάρη 27B, Αθήνα.

- Related academic journals:

- International Journal of Spatial Data Infrastructures Research published by European Commission. ISSN: 1725-0463 http://ijsdir.jrc.ec.europa.eu/index.php/ijsdir
- Journal of Geographic Information System- published by Scientific Research Publishing Editor-in-Chief: Francisco J. Tapiador . Editorial Board: Alia I. Abdelmoty , Tofael Ahamed , Dafer Algarni , Carlos Marcelo Di Bella , Christophe Claramunt , Weihong Cui , Fuchu Dai , Anrong Dang , Hossein Ghadiri , Shuanggen Jin , Saro Lee , Xiang Li , Hervé Martin , Mainguenaud Michel , Jordi Martí-Henneberg , Xiaosheng Qin , Shih-Lung Shaw , P. S. Sriraj , Eddy Lynn Usery , Herna Viktor , Jianhua Xu , Xiaohuan Yang , Axing Zhu , Liangfeng Zhu .ISSN Print: 2151-1950 ISSN Online: 2151-196 <u>http://www.scirp.org/journal/jajs/</u>
- ISPRS International Journal of Geo-Information- published by MDPI AG Editor-in-Chief: Prof. Dr. Wolfgang Kainz, Editors: Yuanyuan Yang, Martyn Rittman, Ozgun Akcay, Christoph Aubrecht, Emmanuel Baltsavias, Norbert Bartelme, Carlos Granell Canut, Jun Chen, Tao Cheng, Mahmoud R. Delavar, Sisi Zlatanova, ISSN 2220-9964, <u>http://www.mdpi.com/journal/ijai</u>

-Useful Webpages

- <u>http://www.spatial.cs.umn.edu/Book/sdb-chap1.pdf</u>
- <u>http://dna.fernuni-hagen.de/papers/IntroSpatialDBMS.pdf</u>
- http://gunet2.cs.unipi.gr/eclass/modules/document/file.php/TMD109/%CE%A3%CE% B7%CE%BC%CE%B5%CE%B9%CF%88%CF%83%CE%B5%CE%B9%CF%82%20%CE%94%C E%B9%CE%B1%CE%BB%CE%AD%CE%BE%CE%B5%CF%89%CE%BD/3-SDBMSlogical.pdf

7th Semester

GEO7010 – LAND MANAGEMENT & REAL ESTATE

COURSE OUTLINE: GEO07010 - LAND MANAGEMENT & REAL ESTATE

(1) **GENERAL**

SCHOOL	ENGINEERIN	G		
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERING			
LEVEL OF STUDIES	Level 6			
COURSE CODE	GEO7010		SEMESTER	7th
COURSE TITLE	LAND MANA	GEMENT & RE	AL ESTATE	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	nents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHIN GHOURS	CREDITS
		Lectures	3	3
Laboratory exer	rcises and semester project 1 2			
		Total	4	5
COURSE TYPE	Skills develo	pment		
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes			
COURSE WEBSITE (URL)	https://eclas c=75	s.uniwa.gr/mo	dules/auth/ope	ncourses.php?f

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

After completing the course students will have:

- knowledge of the goals and tools of land management
- knowledge of the economic theories for land rent and land uses
- understanding of the institutions and the operation of the real estate market
- knowledge of the data required for the analysis of the real estate market
- understanding of the definition of market value and its relation to assessed (tax) value
- knowledge of the factors influencing property value
- knowledge of the procedure for property valuation
- the ability to implement appraisal methods according to the property type
- knowledge of mortgage loans, legislation and taxation concerning property in Greece

- information on the appraisal profession and the required qualifications •
- the ability to understand scientific publications and data concerning the real estate market

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Working independently
- Team work
- Production of creative thinking

(3) SYLLABUS

- 1. Basic concepts and definitions (property, land rent, value)
- 2. Land policy (tools, institutions, legislation, methods and measures) Land policy and cadastre
- 3. Basic concepts on land management and relevant economic theory
- 4. Real estate market:
 - a. Definitions of market value and other property values
 - b. Factors influencing property values
 - c. Actors, bodies and institutions (real estate agents, webpages for real estate data, the appraisal profession, international organizations)
- 5. Real estate appraisal (definition, purpose, procedure, appraisal methods)
- Appraisal methods (market approach, residual approach, income approach, discounted cash flow, cost approach) – land-for-apartment exchange system in Greece – mass appraisal – property valuation outside town plans
- 7. Real estate legislation (types of ownership, tenancies, brokerage)
- 8. Property taxation (types of property taxes, assessed or tax values)
- 9. Residential mortgage loans (interest rates, compound interest, types of loans, loan procedures in Greece)

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face			
Face-to-face, Distance learning, etc.				
USE OF INFORMATION	Powerpoint for presentations, the course website (e-			
ANDCOMMUNICATIONS	class) for uploading course m	aterial and students'		
TECHNOLOGY	assignments. Spreadsheets, statistical analysis software			
Use of ICT in teaching, laboratory education, communication with students	¹ , and GIS software for teaching and carrying out exercise			
	and projects.			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	39		
	Laboratory practice	13		
The student's study hours for each learning	Project and essay writing	40		
activity are given as well as the hours of non- directed study according to the principles of the	Study and analysis of	58		
ECTS	bibliography			
	Course total 150			
STUDENT PERFORMANCE	Language of evaluation: Gre	ek		
EVALUATION				
Description of the evaluation procedure	Methods of evaluation:			
	1. Final exam (60%) which includes open- ended			
Specifically-defined evaluation criteria are	questions and problem solving			
given, and if and where they are accessible to students.	2. Laboratory work (10%)			
	3. Project, writing essay and oral presentation (30%)			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

In Greek

- 1. Karanikolas N. 2010. Property Valuation, Disigma, Thessaloniki.
- 2. Kiochos P. 2010. Introduction to property valuation and appraisal methods, E. Kiochou publications, Athens.
- 3. Zentelis P. 2011. About real estate and cadastre, Athens, Papasotiriou.
- 4. Zentelis P. 2015. Real Estate. [e-book.] Athens Hellenic Academic Libraries Link (Heal Link). Available at: http://hdl.handle.net/11419/4235.
- 5. Scarrett D. 2012. Property valuation: the five methods, Kleidarithmos publishing, Athens

In English

- 1. Shapiro E., Mackmin D. and Sams G. 2013. Modern Methods of Valuation, New York: Routledge.
- 2. Baranzini A., Ramirez J., Schaerer C. and Thalmann P. (eds.) 2008. Hedonic Methods in Housing Markets, New York: Springer.

- 3. Ratcliffe J., Stubbs M. and Keeping M. 2009. Urban Planning and Real Estate Development, London: Routledge.
- 4. Rattermann M.R. 2009. The Student Handbook to the Appraisal of Real Estate, 13th Edition, MAI, SRA.
- 5. The European Group of Valuers' Associations (TEGoVA) 2016. European Valuation Standards 2016, 8th edition, http://www.tegova.org/

- Related academic journals:

Journal of European Real Estate Research, Emerald Group Publishing Land, MDPI Journal of Real Estate Research, American Real Estate Society

GEO7020 – PHOTOGRAMMETRY III (Digital Photogrammetry & Computer Vision)

COURSE OUTLINE: GEO7020 – PHOTOGRAMMETRY III (Digital Photogrammetry & Computer Vision)

(1) GENERAL

SCHOOL					
	ENGINEERIN	ENGINEERING			
ACADEMIC UNIT	DEPT. OF SU	DEPT. OF SURVEYING & GEONIFORMATICS ENGINEERING			
LEVEL OF STUDIES	Graduate –	Level 6			
COURSE CODE	GEO7020		SEMESTER 7 th		
COURSEITTE	GEO702 Pho Computer Vi		II (Digital Photog	rammetry &	
if credits are awarded for separate compor laboratory exercises, etc. If the credits are awar	INDEPENDENT TEACHING ACTIVITIES WEEKLY redits are awarded for separate components of the course, e.g. lectures, TEACHING pry exercises, etc. If the credits are awarded for the whole of the course, give TEACHING the weekly teaching hours and the total credits HOURS				
	Lec	tures and Labs	4(2/2)	5	
		TOTAL	4	5	
COURSE TYPE	Specialized §	general knowle	dge		
	Photogramr	netry I, Photog	rammetry II		
PREREQUISITE COURSES	Suggested c	ompletion of co	ourse Digital Image Processing		
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
OFFERED TO ERASMUS STUDENTS	Can be taught in English				
COURSE WEBSITE (URL)	https://eclas. =75	https://eclass.uniwa.gr/modules/auth/opencourses.php?fc =75			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Following the two previous courses (*Photogrammetry I* and *II*), the purpose here is first to convey necessary knowledge regarding certain concepts and tools of image processing. This will help understand the logic, the mathematical models and the methods of automatic photogrammetric techniques in today's digital environment. A further task is to effectively insert modern photogrammetric approaches (orientations and reconstruction) into the wider context of a rapidly evolving geospatial technology as well as into a more general inter-disciplinary framework involving automatic extraction of geometric and semantic information from images, which includes fields such as computer vision and pattern recognition. The combination of theoretical lectures and implementation (in the Lab) of algorithms of digital photogrammetry by the students themselves aims at equipping them with the capability to address new problems and adapt to specific requirements

Successful completion of this third compulsory course in photogrammetry means that students:

• Have understood the theoretical background of image processing techniques, of image transformation methods and of today's automatic photogrammetric tools, and thus are in position to plan and carry out digital photogrammetric projects.

• Have understood basic mathematical models from computer vision (e.g. fundamental and essential matrices) and their relation to standard photogrammetric formulations.

• Are capable of controlling the performance of current photogrammetric software (methods and strategies of multi-view matching, robust estimation techniques etc.) and are in principle competent to assess results and tackle basic problems encountered.

• Have also the capability of programming computer modules for basic tasks of photogrammetry and computer vision (radiometric/geometric image transformations, image matching) according to the problem involved.

• Have good understanding of the potential of photogrammetry and computer vision as well as their relation to relevant fields to which they provide important input data (digital terrain models, orthomosaics, textured 3D models etc.), such as cartography and GIS.

• In view of the above, the students may successfully design, execute and evaluate today's photogrammetric projects, and at the same time follow and integrate into their activity current scientific and technological developments.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Working independently
- Teamwork
- Criticism and self-criticism
- Adapting to new situations

(3) SYLLABUS

Introduction to digital photogrammetry and computer vision. Radiometric and spatial resolution. The meaning of scale in a digital image. Radiometric image transformations (histogram transformations, thresholding, image convolution, linear and non-linear filters, smoothing, enhancements, automatic edge detection). Geometric image transformations. Colour interpolation and image resampling. Image pyramid. Panoramic images. Digital rectification, orthorectification, digital surface development and cartographic projections. Photogrammetric automation and real-time solutions. Epipolar geometry and epipolar rectification of the stereopair. Computer vision and photogrammetry (essential matrix, fundamental matrix), robust estimators, RANSAC. Point operators and descriptors. Point extraction and point matching. Automatic relative orientation. Automatic phototriangulation. Digital image matching / correlation and generation of geometric constraints. Automatic DSM generation and 3D reconstruction.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face
Face-to-face, Distance learning, etc.	
USE OF INFORMATION	- Support by the electronic asynchronous course
ANDCOMMUNICATIONS	platform
TECHNOLOGY	eclass (exchange of information and digital data

Use of ICT in teaching, laboratory education, communication with students	 between tutors and students Use of electronic material as teaching aid (ppt slides). Solution of photogrammetric problems using <i>Matlab</i>. Use of photogrammetric software for Lab exercises. 		
TEACHING METHODS The manner and methods of teaching are	Activity	Semester workload	
described in detail.	Lectures	26	
	Laboratory / Exercises	26	
The student's study hours for each learning activity are given as well as the hours of non-	Preparation of Exercises	36	
directed study according to the principles of the	Non-directed study	62	
ECTS			
	Course total	150	
STUDENT PERFORMANCE	Course total Language of evaluation: Gree		
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure			
EVALUATION	Language of evaluation: Gree	ek	
EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice	Language of evaluation: Gree Methods of Evaluation:	ek end of the semester (70%),	
EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-	Language of evaluation: Gree Methods of Evaluation: • Written examination in the	ek end of the semester (70%),	
EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public	Language of evaluation: Gree Methods of Evaluation: • Written examination in the which combines open-ende	ek e end of the semester (70%), ed questions and numeric	
EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical	Language of evaluation: Gree Methods of Evaluation: • Written examination in the which combines open-ende calculations.	ek e end of the semester (70%), ed questions and numeric	
EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public	Language of evaluation: Gree Methods of Evaluation: • Written examination in the which combines open-ende calculations.	ek e end of the semester (70%), ed questions and numeric	
EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	Language of evaluation: Gree Methods of Evaluation: • Written examination in the which combines open-ende calculations.	ek e end of the semester (70%), ed questions and numeric	

(5) SUGGESTED BIBLIOGRAPHY

6. ASPRS, 2013. *Manual of Photogrammetry*. 6th edition, J. Chris McGlone (editor).

- 7. Luhmann T., Robson S., Kyle S., Harley I., 2006. *Close Range Photogrammetry: Principles, Techniques and Applications*. Whittles Publishing, Scotland.
- 8. Szeliski R., 2010. *Computer Vision: Algorithms and Applications* (draft). Springer (http://szeliski.org/Book/).
- 9. Hartley R., Zisserman A., 2000. *Multiple View Geometry in Computer Vision*. Cambridge University Press.
- 10. Förstner W., Wrobel B. P., 2016. *Photogrammetric Computer Vision*. Springer.
- 11. Schenk T., 1999. *Digital Photogrammetry*. TerraScience, Laurelville, Ohio, USA.

In Greek:

- 12. Kraus K., 2003. *Photogrammetry*. Vol 1. TEE Editions, Athens.
- 13. Petsa E., 2019. *Couse Slides for "Digital Photogrammetry and Computer Vision"*. UniWA.
- 14. Grammatikopoulos L., Kalisperakis I., Karras G., Petsa E., Tsironis V., 2018. *Elements* of Projective Geometry in Computer Vision. UniWA

GEO7030 – CADASTRE

COURSE OUTLINE: GEO7030 - CADASTRE

(1) GENERAL

SCHOOL	SCHOOL OF	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS				
	ENGINEERIN	IG			
LEVEL OF STUDIES	Undergradu	ate			
COURSE CODE	GEO7030		SEMESTER	7 th	
COURSE TITLE	CADASTRE				
if credits are awarded for separate compor laboratory exercises, etc. If the credits are	INDEPENDENT TEACHING ACTIVITIES WEEKLY are awarded for separate components of the course, e.g. lectures, WEEKLY tory exercises, etc. If the credits are awarded for the whole of the TEACHIN course, give the weekly teaching hours and the total credits GHOURS			CREDITS	
			4		5
		Total	4		5
COURSE TYPE	General back	kground [obliga	atory]		
PREREQUISITE COURSES:	-				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)				
	https://eclass.uniwa.gr/modules/auth/opencourses.php?f c=75				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The course aims to introduce students to the Hellenic (National) Cadastre and main cadastral surveys/works in Greece, such as Urban Plans implementation, roads opening-up or widening. During the course students get familiar with Hellenic Cadastre development and operation, which due to its technical and legal aspects is complicated. Furthermore, students elaborate projects on cadastral surveys, such as Urban Plans implementation and roads opening up or widening in respect to property rights that are within the main aspect of their profession as Surveyors and Geoinformatics Engineers. Students also learn main principles of Land Administration.

After successful course completion, students are expected to have knowledge on:

- a) Basic principles of Greek Property Law
- b) Structure and operation of modern cadastral systems
- c) Legislation on the Hellenic Cadastre, implementation of that legislation
- d) Legislation on Urban Plans Implementation
- e) Basic principles of INSPIRE Directive, in respect to Cadastre

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adaption to new work conditions
- Decision-making
- Independent work
- Team work
- Self-evaluation
- Free, creative and inductive thinking

(3) SYLLABUS

Theory

- Greek Property Law and Deeds analysis
- Legislation of Hellenic Cadastre
- Property Declaration on Hellenic Cadastre during its development
- Spatial adjustments on operational Hellenic Cadastre
- Legislation on Urban Plans Implementation and its applications (technical & legal)
- Principles on structure and operation of modern cadastral systems
- INSPIRE Directive and Cadastre
- Roads opening up or widening and property rights alteration (technical & legal)
- Cadastre and Land Administration

Course exercises

Practical exercises on:

- Property Declaration on Hellenic Cadastre and process analysis
- Cadastral survey on urban plan implementation (includes Group presentation and individual analytical technical report submission)
- Spatial adjustments on operational Hellenic Cadastre
- Roads opening up or widening and property rights alteration (technical & legal)

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-Face			
USE OF INFORMATION	 Web search (legislation and 	l literature review)		
ANDCOMMUNICATIONS	 E-class UNIWA platform an 	d office Microsoft 365		
	UNIWA tools (TEAMS, Class N	Notebook, Shared docs,		
Use of ICT in teaching, laboratory education, communication with students	email)			
	 Office software (word, pre 	contations spreadshoots		
		sentations, spreadsheets		
TEACHING METHODS	editors)	Semester workload		
	Activity			
The manner and methods of teaching are described in detail.	Lectures (Theory –	52 (13*4)		
	exercises)			
	Home Study	35		
activity are given as well as the hours of non- directed study according to the principles of the	Team project	38		
ECTS	Course total	125		
STUDENT PERFORMANCE	Evaluation Language: Greek	(English)		
EVALUATION	Evaluation methods:			
Description of the evaluation procedure	• Written exam (winter or September exams period)			
	 Team project official presentation, final personal 			
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	technical report on the team project, class exercises.			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

Arvanitis, A., 2014, Cadastre 2020 [in Greek: Ktimatologio 2020], Ziti Publications ISBN: 960-431-606-0 (in greek language)

<u>www.ypeka.gr</u> <u>www.ktimatologio.gr</u> <u>www.et.gr</u> <u>www.fig.net</u> <u>https://inspire.ec.europa.eu/</u>

- Related academic journals: MDPI Sustainability MDPI Land Elsevier Land Use Policy

GEO7040 – ERROR THEORY & OBSERVATIONS ADJUSTMENT II

COURSE OUTLINE: GEO7040 - ERROR THEORY & OBSERVATIONS ADJUSTMENT II

(1) GENERAL

SCHOOL SCHOOL OF ENGINEERING				
	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN	G		
LEVEL OF STUDIES	Undergradua	ate		
COURSE CODE	GEO7040		SEMESTER	7 th
COURSE TITLE	ERROR THEC	ORY & OBSERV	TIONS ADJUS	TMENT II
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	ponents of the course, e.g. lectures, s are awarded for the whole of the TEACHIN CREDIT			
		Lectures	4	5
		Lab exercises		
		Total	4	5
COURSE TYPE	Specialized §	general knowle	dge	
PREREQUISITE COURSES:	GEO301 – E	rror Theory and	d observation	adjustment II
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek. It can be offered in English if there are foreign students			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (Eng	glish)		
COURSE WEBSITE (URL)	<u>https://eclas</u> c=75	s.uniwa.gr/mo	dules/auth/o	pencourses.php?f

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Upon successful completion of the course, the student:

- will be able to distinguish and categorize the basic methods of observations adjustment,
- will have understood parameter estimation methods with emphasis on practical problems,
- will have the ability to analyze the data of each problem based on them to apply the appropriate adjustment method and to interpret and evaluate the results,
- will be able to develop methods of analysis of specialized algorithms for optimal data processing in Geosciences,
- will have the ability develop algorithms for adjustment methods.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search, analysis and synthesis of data and information, using the necessary technologies
- Decision making
- Working independently
- Working in an interdisciplinary environment
- Develop of new research ideas
- Promoting free, creative and inductive thinking

(3) SYLLABUS

Data analysis and observations adjustment, main features of adjustments methods, alternative adjustment methods, the method of observation equations, examples, accuracy of adjustment results, special cases of observation equations, the concept of rank defect to solve problems, constraints (minimum, redundant, internal constraints), adjustment in sequence stages, adjustment with pre-existing information on unknown parameters, method of condition equations, examples, method of mixed equations, mixed equations with commitments, examples, comparison, statistical testing and evaluation of adjustment results, statistical hypotheses, general hypothesis, total control and data scanning, interpolation and forecasting, models with stochastic parameters, estimation of variability components.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Lab exercises: specialized software and libraries for surveying studies Utilization of e-class UNIWA platform (file exchange) 			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	52		
	Study and analysis of	40		
The student's study hours for each learning	bibliography			
activity are given as well as the hours of non- directed study according to the principles of the	Exercises/Projects	48		
ECTS	Course total	150		
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Language of evaluation: Gre Method of evaluation: • Written exams: 70% • Laboratory exercises,			

Written, graded difficulty, problems - exercises

(5) ATTACHED BIBLIOGRAPHY

In Greek:

- 1. Dermanis A. (1987). Observation adjustment and evaluation theory, Vol. 2, ed. Ziti.
- 2. Dermanis A. & Foriou A. (1992). Methods and applications of observation adjustment, Ed. Ziti

In English:

- 3. Dermanis A., A. Grun and F. Sanso eds. (2000) Geomatic methods for the analysis of data in the Earth Sciences. Springer.
- 4. Ghilani C.D. and P.R. Wolf (2006) Adjustment computations and spatial data analysis. John Wiley and Sons.
- 5. Koch K.R. (1999) Parameter estimation and hypothesis testing in linear models. Springer.
- 6. Teunissen P.J.G. (2003) Adjustment theory. Series on Mathematical Geodesy and Positioning, Delft, The Netherlands.
- 7. Teunissen P.J.G. (2000) Testing theory. Series on Mathematical Geodesy and Positioning, Delft, The Netherlands.

GEO7050 – SPATIAL PLANNING AND REGIONAL DEVELOPMENT

COURSE OUTLINE: GEO7050 - SPATIAL PLANNING AND REGIONAL DEVELOPMENT

(1) GENERAL

SCHOOL				
	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN	G		
LEVEL OF STUDIES	Undergradua	ate		
COURSE CODE	GEO7050		SEMESTER 7 th	
COURSE TITLE	SPATIAL PLA	NNING AND R	EGIONAL DEVELO	PMENT
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	mponents of the course, e.g. lectures, its are awarded for the whole of the WEEKLY CREDITS			CREDITS
			3	3
		Lectures		
			1	2
		Lab exercises		
		Total	4	5
COURSE TYPE	Specialised I	knowledge		I
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (Eng	glish)		
COURSE WEBSITE (URL)				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The course aims to elaborate on the economic, social and environmental dimensions of sustainable development with emphasis on spatial planning. A long-term analysis of institutional developments for spatial planning and regional development at the national and European levels is also carried out. The spatial planning system is examined in relation to the administrative system, and the special categories of areas (mountainous, coastal, etc.) are also examined. An important part of the course focuses on analysing the interconnections between land uses, infrastructure networks, housing networks, protected areas and location of activities. In addition, the objectives, tools and strategies of physical and financial spatial planning concerning the available national and European financial instruments are examined. Through the analysis of these issues, the course aims to familiarise the students with the tools of regional policy and concepts such as the regional problem, regional inequalities, spatial cohesion and regional specialisation. The students are also introduced to Integrated Coastal Zone Management and Marine Spatial Planning approaches.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Decision-making
- Working independently
- Team work
- Criticism and self-criticism
- Production of free, creative and inductive thinking

(3) SYLLABUS

- 1. Introduction: Region, development and spatial planning.
- 2. Economic, social and environmental aspects of sustainable development.
- 3. Natural and man-made environment. Indicators for measuring spatial phenomena.
- 4. Land use/ coverage, infrastructure networks. The housing network and its dynamics. Protected areas
- 5. Location of activities.
- 6. Integrated regional development. Regional inequalities, convergence, cohesion, regional specialization, integration. The regional problem and the need for regulation-management. Motivation, knowledge, innovation, new technologies. SWOT analysis.
- 7. The administrative system of Greece. Spatial planning at different levels. Special categories of areas (mountainous, coastal, border, metropolitan, etc.).
- 8. Physical and financial planning: Objectives, Strategies. Financial instruments at Greek and European level.
- 9. Integrated Coastal Zone Management and Marine Spatial Planning.
- 10. Spatial studies and regional development studies. The role of surveyors/ geoinformatic engineers.
- 11. Recent institutional developments concerning spatial planning and regional development in national/ european levels.

(4) TEACHING and LEARNING METH	IODS - EVALUATION			
DELIVERY	Face-to-Face			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Web search (literature review and data sources) Utilization of E-class UNIWA platform (file exchange among professors and students) Email Office software (word, presentations, spreadsheets editors) 			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are	Lectures	39 (13 X 3)		
described in detail.	Study and analysis of	39 (13 X 1)		
The student's study hours for each learning	bibliography			
activity are given as well as the hours of non- directed study according to the principles of the	Preparation of exercises	58		
ECTS	Study-Essay	50		
	Course total	160		
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	questions, & problen	end of the semester stionnaires, short-answer		

(5) ATTACHED BIBLIOGRAPHY

- Atzema O. et al. (eds), 'Regions, Land, Consumption and Sustainable Growth, Edward Elgar, 2005.
- European Commission, 'A new Partnership for Cohesion; Convergence, Competitiveness, Cooperation (3rd report on economic and social cohesion', European Communities, 2004.
- European Commission, 'ESDP, European Spatial Development Perspective', European Communities, 1999.
- European Commission, 'Investing in Europe's future' (5th Report on Economic, Social and Territorial Cohesion), European Communities, 2010.
- Hall P. 'Urban and Regional Planning'. 4th Edition. Routledge. London and New York, 2002.
- OECD, 'Towards a New Role for Spatial Planning, OECD Publications, 2001.
- Petrakos G., Psycharis G., Regional development in Greece, Kritiki Editions, Athens, 2016.
- Reimer M., Getimis, P., Blotevogel H. 'Spatial Planning Systems and Practices in Europe. A Comparative Perspective on Continuity and Changes', (eds), Routledge, New York, 2014.
- Wassenhoven, L. 'Maritime Spatial Planning: Europe and Greece', Crete University Press, 2017.

Websites

- ECTP-CEU (European Council of Spatial Planners Conseil européen des urbanistes), <u>http://www.ectp-ceu.eu/</u>
- European Commission / Regional Policy, <u>http://ec.europa.eu/regional_policy/index_el.cfm/</u>
- ESPON, (European Observation Network for Territorial Development and Cohesion), <u>http://www.espon.eu/main/</u>
- ISOCARP (International Society of City and Regional Planners), <u>http://www.isocarp.org/</u>
- United Nations Development Programme ,
- http://www.undp.org/content/undp/en/home.html/

GEO7060 – GEODETIC-SURVEYING APPLICATIONS

COURSE OUTLINE: GEO7060 - GEODETIC-SURVEYING APPLICATIONS

(1) GENERAL

SCHOOL	ENGINEERIN	G		
ACADEMIC UNIT				
	ENGINEERIN			MMATICS
LEVEL OF STUDIES		-		
	Graduate – L	evel /		
COURSE CODE	GEO7060		SEMESTER 7 th	
COURSE TITLE	GEODETIC-S	SURVEYING APP	LICATIONS	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	are awarded for the whole of the CREDITS			CREDITS
	Lectures and Labs 4(2/2) 5			
		TOTAL	4	5
COURSE TYPE	Special back	ground		
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Can be taught in English			
COURSE WEBSITE (URL)	UNIWA Open eClass Γεωδαιτικές - Τοπογραφικές Εφαρμ			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

- **Metrology** (Introduction, errors, checking and calibration, ISO standards)
- **Special levelling methods** (precise levelling, digital levelling, special trigonometric levelling, heighting with GPS)
- Underground Surveying (optical and mechanical methods, gyro-theodolite, line and level)
- Laser Scanning (Principles of 3D Laser Scanning, principles of pulsed time of flight TLS technology and Georeferencing in TLS, Issues in Laser Scanning)
- **Special Construction Stakeout Surveys** (Introduction, Construction Stakeout Fundamentals, Levelling methods, basic procedures, office and field preparations and procedures, errors in Stakeout Surveys)
- **Cultural Heritage Surveying** (The aims of a cultural heritage survey, basic methods of cultural heritage surveying)

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

After completion of the course students will be able to design and implement special geodetic and surveying methodologies and techniques required for design, construction and monitoring of technical projects, industrial applications in surveying underground works and cultural heritage documentation. Also, they will become familiar with state-of-the-art geodetic equipment and techniques in order to be able to apply them in a number of geodetic applications.

(3) SYLLABUS

- Metrology
- Special levelling methods
- Underground Surveying
- Laser Scanning
- Special Construction Stakeout
- Cultural Heritage Surveying

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face			
USE OF INFORMATION ANDCOMMUNICATIONS	- Support by the electronic asynchronous course platform			
TECHNOLOGY Use of ICT in teaching, laboratory education,	eclass (exchange of information	ation and digital data		
communication with students	between tutors and students)			
	 Use of software 			
	- Use of programming enviro	onment for preparing		
	projects.			
	- Use of Surveying software	for Lab exercises.		
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	52		
	Laboratory / Exercises	48		
The student's study hours for each learning				
activity are given as well as the hours of non- directed study according to the principles of the	Non-directed study	50		
ECTS	Course total	150		
STUDENT PERFORMANCE EVALUATION	Language of evaluation: Greek or English			
Description of the evaluation procedure	Methods of evaluation:			
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Final exam (60%) which includes open- ended question: and problem solving			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- 1. Allan A.L., Hollwey J.R., Maynes J.H.B., Amin A., 1980. Practical Field Surveying and Computations. Heinmann, Portsmouth (USA).
- 2. Baarda W., 1967. Statistical Concepts in Geodesy. Netherlands Geodetic Commission, Publications on Geodesy, New Series, Vol. 2, No. 4, Delft.
- 3. Heritage G., Large A., 2009. Laser scanning for the environmental sciences. Wiley-Blackwell.
- 4. Howard P., 2007. Archeological Surveying and mapping. Recording and depicting the landscape. Routledge Taylor & Francis Group, London and New York.
- 5. Mikhail E. M., Gracie G., 1981. Analysis and Adjustment of Survey Measurements. Van Nostrand Reinhold, New York.
- 6. Shan J., Toth Ch., 2008. Topographic laser ranging and scanning. Principles and processing. CRC Press, Taylor & Francis Group

GEO7070 – SPECIAL TOPICS IN REMOTE SENSING

COURSE OUTLINE: GEO7070 - SPECIAL TOPICS IN REMOTE SENSING

(1) GENERAL

SCHOOL	ENGINEERI	ENGINEERING			
DEPARTMENT	SURVEYING AND GEOINFORMATICS ENGINEERING				
LEVEL OF STUDIES	Undergradu	uate – level 7			
COURSE CODE	GEO7070 SEMESTER OF STUDIES 7 th			7 th	
COURSE TITLE	Special Top	ics in Remote	Sensing		
INDEPENDENT TEACHI in case the credits are awarded in discrete p Laboratory Exercises, etc. If the credits are awar enter the weekly teaching hours	e parts of the course e.g. Lectures, varded uniformly for the entire course,			CREDIT	
		Lectures	3	3	
	Laboratory Exercises 1			2	
	TOTAL 4 5			5	
TYPE OF COURSE	ELECTIVE COURSE FOR THE DIRECTION IN GEO- INFORMATICS			GEO-	
PREREQUISITE COURSES:	Remote Sensing I & II				
C.LAUSSA OF TEACHING AND EXAMINATIONS:	Greek				
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES (English)				
ONLINE COURSE PAGE(URL)	https://eclass.uniwa.gr/courses/GEO707/				

(2) LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course are described, the specific knowledge, skills and abilities of an appropriate level that students will acquire after the successful completion of the course.

The aim of the course is to understand specialized applications of remote sensing in:

- Urban environment
- Agricultural crops
- Monitoring of natural disasters
- Water management
- Marine environment
- Monitoring of targets and environmental pollution
- Infrastructure and energy projects
- Specialized methods of Artificial Intelligence and analysis of large amounts of satellite data

General Competencies

Taking into account the general skills that the graduate must have acquired (as these are listed in the Diploma Supplement and listed below) which / which of them is the subject of the course intended for?

- Search, analysis and synthesis of data and information, using the necessary technologies
- Decision-making
- Autonomous work
- Project planning and management

(3) COURSE CONTENT

- Spatial Changes in urban environment and atmospheric quality
- Flood monitoring
- Monitoring earthquakes, micro-movements and erosion
- Fire monitoring and mapping
- Estimation of rainfall and snowfall
- Classification of agricultural crops
- Mapping of inaccessible coastal areas and wetlands
- Water quality techniques and river sediment calculation techniques
- Extraction of bathymetry from satellite data
- Archaeological depictions and excavations
- Specialized machine learning methods in satellite image classification
- Time series and techniques for large volume of satellite data mining (Big dada and Datamining).
- Identifying and tracking goals
- Use of Remote Sensing in infrastructure and energy projects
- Special applications of remote sensing software (ENVI, eCognition)

4) TEACHING AND LEARNING METHODS - EVALUATION				
DELIVERY	Face to face			
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES Use of TEIs in Teaching, Laboratory Education, Communication with students	Lectures: Use of ICT (power point presentations) Laboratory exercises: use of specialized software for the analysis of digital image data. Communication: use of asynchronous tele-education platform-eclass			
TEACHING ORGANIZATION The way and methods of teaching are described in detail. The student's study hours for each learning activity are listed, as well as the hours of a non- guided study according to the principles of ECTS	Activity Lectures Study & analysis of bibliography Laboratory Exercises Total Course	Semester Workload 60 60 30 150		
STUDENT EVALUATION Description of the evaluation process Evaluation Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Report/ Report, Oral Examination, Public Presentation, Laboratory Thesis, Clinical Examination, Clinical Examination, Artistic	 Multiple-choice final written exam and development questions(60%) Semester theme(4 0%) 			
Explicitly defined assessment criteria are mentioned and if and where they are accessible to students.	Language of the examination: Greek (English if needed, e.g., Erasmus+students)			

(5) RECOMMENTED BIBLIOGRAPHY

Greek:

- 7. Skianis Eim. G., Nikolakopoulos G. K., Vaiopoulos A. D. 2012. "Remote Sensing" ION Publications 336sel.
- 8. Kartalis K., C., 2007, Fidas, "Principles & Applications of Satellite Remote Sensing", V. Gkiourdas Ekdotiki, Athens.
- 9. Mertikas S.P., 2006, "Remote Sensing and Digital Image Analysis", ION Publications

English:

- 13. Campbell J.B., 2006. Introduction to Remote Sensing, The Guilford Press, New York.
- 14. Cracknell A.P., L. Hayes, 2007. Introduction to Remote Sensing, CRC Press.
- 15. Jensen J.R., 2005. Introductory Digital Image Processing: A Remote Sensing Perspective. Prentice Hall.
- 16. Lillesand S. M., R.W. Kiefer, J.W. Chipman, 2007. *Remote Sensing and Image Interpretation*. Wiley.
- 17. Mather P., 2004. *Computer Processing of Remotely Sensed Images: An Introduction*. Wiley.
- 18. Sabins F.F., 1997. *Remote Sensing: Principles and Interpretation*, W. H. Freeman & Co., New York.
- 19. Schowengerdt R.A., 2006. *Remote Sensing: Models and Methods for Image Processing*, Academic Press.

GEO7080 – ANALYTICAL METHODS IN GIS COURSE OUTLINE: GEO7080 – ANALYTICAL METHODS IN GIS

(1) GENERAL

SCHOOL	SCHOOL OF	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS				
	ENGINEERIN	ENGINEERING			
LEVEL OF STUDIES	Undergradu	ate			
COURSE CODE	GEO7080		SEMESTER 7th		
COURSE TITLE	Analytical M	ethods in GIS			
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	nents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHIN GHOURS	CREDITS	
		Lectures	3	3	
	Proj	ects/ Exercises	1	2	
		Total	4	5	
COURSE TYPE	Special back	ground/ skills d	evelopment		
PREREQUISITE COURSES:	GIS Applicati	ons and Spatia	Decision Suppor	t	
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (Eng	glish)			
COURSE WEBSITE (URL)	https://eclas	s.uniwa.gr/mo	dules/auth/open	courses.php?f	
	<u>c=75</u>				
	https://eclas	<u>s.uniwa.gr/cou</u>	<u>rses/TOP147/</u>		

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The scope of the course is to have in depth knowledge and develop skills on the complexity and variability of geographical/ spatial problems, under GIS science in theoretical and practical level.

The course covers a wide range of subjects on understanding and using GIS in spatial analysis, and 3D analysis, network analysis and location and access models implementation. The course syllabus includes practical exercises and project elaboration, in respect to planning and implementation solutions, for spatial problems in local or regional level. Course's scope is that students understand the theoretical background and develop skills on definition, analysis, techniques implementation for spatial problems solution on regional and urban scale, and their presentation.

After successful course completion, students are expected to:

- Know geographic information selection and management methodologies appropriate for definition and classification of spatial problems in respect to their size, time and scale
- Understand the theoretical background on spatial analysis methods definition and

function with GIS use, so as to be able to analyze spatial phenomena and their intercorrelations

- Apply analysis and management techniques on raster data models, transformations, classification and creation of data sets
- Design surface analysis models and 3D sets and to apply interpolation methods
- Design location solution scenarios and develop the appropriate cartographic products for the analysis and synthesis of spatial information
- Develop applications and design solutions for spatial and environmental problems in any geographic reference scale and to conduct technical reports with the spatial analysis results
- Evaluate scenarios results, perform comparative analysis and define best practices in GIS in respect to the analytical methods
- To elaborate with other students in project elaboration and oral presentation

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search, analysis and synthesis of data and information, with the use of the necessary technology
- Adaption to new work conditions
- Decision-making
- Independent work
- Team work
- Self-evaluation
- Free, creative and inductive thinking

(3) SYLLABUS

- i. Introduction. Geographic data models review. GIS analytical methods and spatial problems. Conceptual framework. Terminology. Application field.
- ii. Continuous data models. Grid formats and geographic data (grid datasets). Spatial Analysis, structures and functions. Advantages and problems. Discrete and continuous fields. Vector and raster data integration. Representation, geographic reference, accuracy and resolution of raster data. Transformations. Cell values, bands and ranges. Attribute Tables in raster files. Reclassification. Derivative information.
- iii. GIS and three-dimensional analysis. Features and application fields. Surface Models. Analytical procedures and derivative information. Interpolation methods. Production of isarithmic lines. Slope maps, aspect models, shaded relief and sun exposure models. Visibility Analysis. Calculating distances and directions. Cost surface models.
- iv. Grid models and spatial analysis methods. Features and application fields. Analytical geometric functions, spatial relationships and zonal statistics. Calculations and mathematical operations on raster files. Logical inquiries and combined information. Distance analysis, proximity and adjacency. Deriving combined statistical information. Density models and spatial distributions. Grid operations and Map Algebra. Location-allocation methods using grid data. Spatial classifications, cost models and accessibility models.
- v. Geometric networks and GIS. Principles and scopes. Network elements and structure. Information associated with the network elements. Construction of a network model. Topology. Location-allocation models within a geometric network. Optimal route operations.
- vi. GIS Applications and environmental problems applications: Water resources management. Feasibility study of a reservoir. Hazard Maps (Risk Mapping). Applications on flood phenomena and diseases dispersions.
- vii. Programming in GIS environment. Analytical procedures and creation of corresponding operating models. (Model Builder). Applications in Archaeology.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
USE OF INFORMATION	 Web search (legislation and literature review) 		
ANDCOMMUNICATIONS	 E-class UNIWA platform an 	d office Microsoft 365	
	UNIWA tools (TEAMS, Class I	Notebook, Shared docs,	
Use of ICT in teaching, laboratory education,	email)		
communication with students	 GIS and CAD software, WEI 	B-GIS	
	 Office software (word, pre 	sentations, spreadsheets	
	editors)		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures Theory	35	
	Exercises	25	
The student's study hours for each learning	Individual projects	40	
activity are given as well as the hours of non- directed study according to the principles of the	Team project	30	
	Home study	20	
	Course total	150	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students.			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

1. ESRI (2012) Using ArcGIS 3D Analyst

- 2. ESRI (2012) Using ArcGIS Spatial Analyst, Advanced Raster Spatial Analysis
- 3. ESRI (2012) Using ArcGIS Network Analyst

4. M. de Smith, M. Goodchild, P. Longley; Geospatial Analysis - a comprehensive guide. 3rd edition © 2006-2009, Published by Matador (an imprint of Troubador Publishing Ltd) on behalf of The Winchelsea Press; ISBN 13: 9781848761582; Free web version site: Spatial Analysis site (<u>http://www.spatialanalysisonline.com/output/</u>)

5. DeMers, M., 2002, GIS modeling in raster, New York, Wiley.

6. Dibble C, Feldman P G (2004) The GeoGraph 3D computational laboratory: Network and terrain landscapes for Repast. J. of Artificial Societies and Social Simulation, 7(1): <u>http://jasss.soc.surrey.ac.uk/7/1/7.html</u>

7. Dodge M, Kitchin R (2001) Atlas of Cyberspace. Available as a free PDF file from:

http://www.kitchin.org/atlas/index.html (originally published by Adison-Wesley).

8. ESRI (1996) Automation of map generalization — the cutting edge technology. ESRI, Redlands, CA, USA: <u>http://downloads.esri.com/support/whitepapers/ao/mapgen.pdf</u>

9. Eastman J R (1989) Pushbroom algorithms for calculating distances in raster grids. Proceedings, Autocarto 9, 288-97. Available as a downloadable pdf from: http://mapcontext.com/autocarto/proceedings/auto-carto-9

http://www.geodata.gov.gr/

INSPIRE

http://europa.eu/legislation_summaries/environment/general_provisions/l28195_el.htm The INSPIRE geoportal http://inspire-geoportal.ec.europa.eu/ www.ktimatologio.gr

Joint Research Centre - JRC - European Commission: <u>https://ec.europa.eu/jrc/en/about</u> 7. Environmental Systems Research Institute <u>http://www.esri.com/</u>

- Related academic journals:

MDPI Geographies, Geoscience

GEO7090 – ARCHITECTURE

COURSE OUTLINE: GEO7090 - ARCHITECTURE

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERING			
LEVEL OF STUDIES	Undergradu	ate		
COURSE CODE	GEO7090		SEMESTER 7 ^t	h
COURSE TITLE	ARCHITECT	JRE		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	nents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHIN GHOURS	CREDITS
			2	
		Lectures		
			2	
		Lab exercises		
			4	5
		Total		
COURSE TYPE	In-depth, co	nsolidation of t	he specialty	
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)			
COURSE WEBSITE (URL)	https://ecla	ss.uniwa.gr/cou	rses/GEO267/	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The learning objectives are achieved by the analytical and synthetic approaches as described below, as well as the feedback of the theoretical and laboratory part of the course.

The analytical approach mainly concerns the theoretical part of the course and the formation of the terms of the architectural problem per historical period and in different cultural environments and spatial areas but also by the special characteristics of the place, natural and man-made. It also includes the acquaintance with main exponents "teachers" of architecture and their work and the development of students' means of expression. The above concerns a series of lectures, which will seek and encourage the active participation of students.

Introduction to architectural design which is primarily a research process therefore cultivates special skills in students.

After the successful completion of the course, students are expected to:

o know the general principles of architecture and to understand how they can contribute to the projects implemented by surveyors-geoinformatics engineers.

o know the basic architectural currents and the work of important architects.

o Have consolidated the principles of ergonomics and apply them.

o be aware of the importance of the environment in architecture.

o Understand the basic requirements of the functional program and develop the skills to transform it into a designed space, obeying the regulatory frame of the relevant regulations.

o evaluate-analyze the architectural solutions with criteria of functionality and construction possibilities.

o choose the appropriate materials and building methods

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

After the successful course attendance, students are expected to acquire the following General Competences:

o Search, analysis and synthesis of data and information, using the necessary technology

o Decision making

o Autonomous and team work

o Project design and management

o Respect for the natural environment

o Promoting free, creative and inductive thinking

(3) SYLLABUS

Theoretical part of the Course

- 1. History of Architecture. Socio-economic correlation / documentation of the architectural project.
- 2. Introduction to the basic parameters of architecture (human scale, function, form, aesthetics, construction, economy, respect for the environment, etc.).
- 3. Basic principles of ergonomics.
- 4. Analysis of issues of orientation, ventilation, lighting, gradation of spaces, etc.
- 5. Geometric approach to architectural design.
- 6. Building and surrounding area.
- 7. Relationship between architectural form and structural function.

Lab Part of the Course

- 1. Essay: Selected Architect's Monograph. Study of major architect's life and work and to analyze a specific project.
- 2. Architectural Design. Project : Residential building

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY METHOD	Face-to-Face Lectures - interactive classroom teaching. 			
	 Encourage students in the preparation of the next lesson. 			
	 Encouraging students Workshops, Conferent 			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Web search (literature review and data sources) Utilization of E-class UNIWA platform (file exchange among professors and students) Email Specialized software and libraries (both commercial and open source) for architectural design Office software (word, presentations, spreadsheets editors) 			
	Activity Semester workload			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures/ Presentations	26		
The manner and methods of teaching are described in detail. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the				
The manner and methods of teaching are described in detail. The student's study hours for each learning activity are given as well as the hours of non-	Lectures/ Presentations Study and analysis of bibliography	26		
The manner and methods of teaching are described in detail. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the	Lectures/ Presentations Study and analysis of bibliography (Homework)	26 26		
The manner and methods of teaching are described in detail. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the	Lectures/ Presentations Study and analysis of bibliography (Homework) Laboratory Exercises (Essay) Laboratory Exercises	26 26 50		
The manner and methods of teaching are described in detail. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS STUDENT PERFORMANCE EVALUATION	Lectures/ Presentations Study and analysis of bibliography (Homework) Laboratory Exercises (Essay) Laboratory Exercises (Project)	26 26 50 58 160		
The manner and methods of teaching are described in detail. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS STUDENT PERFORMANCE	Lectures/ Presentations Study and analysis of bibliography (Homework) Laboratory Exercises (Essay) Laboratory Exercises (Project) Course total	26 26 50 58 160 ek		

(5) **RECOMMENDED BIBLIOGRAPHY**

-History of Architecture (20th century)

- Jencks, Charles The Language of postmodern architecture, Academy Editions, London 1977
- Κόνραντς Ούρλιχ Μανιφέστα και Προγράμματα της αρχιτεκτονικής του 20ου αι, Επίκουρος, Αθήνα 1977
- Φιλιππίδης, Δημήτρης Νεοελληνική Αρχιτεκτονική, Μέλισσα, Αθήνα 1984
- Frampton Kenneth,

"Towards a Critical Regionalism: Six Points for an Architecture of Resistance", in The Anti-Aesthetic: Essays on Postmodern Culture. edited by Hal Foster, Bay Press, Port Townsen (1983).

Studies in Tectonic Culture: The Poetics of Construction in Nineteenth and Twentieth Century Architecture. MIT Press, Cambridge, Mass., 1995.

The Evolution of 20th-Century Architecture: A Synoptic Account. Springer, New York, 2006. Modern Architecture: A Critical History (World of Art), Thames & Hudson, London, Fifth Edition (2020).

 Χολέβας, Νικόλαος Αρχτεκτονική του μεσοπολέμου στα Βαλκάνια, Φιλιππότη, Αθήνα 1994

-Architectural Design

- Baker Goefry, Le Corbusier An analysis of form Van Nostrand Reinhold, 1996
- Ching Francis Archtecture: Form Space and order, Van Nostrand Reinhold, 1996
- Ζάννος, Α.Ι. Αρχιτεκτονική μορφή και στατική λειτουργία, Αθήνα 1983
- Μιχελής, Π. Η αρχιτεκτονική ως τέχνη, Αθήνα 1979
- Μιχελής, Π. Η αισθητική της αρχιτεκτονικής του μπετόν αρμέ, Αθήνα 1975
- Mitchell, William The logic of architecture, MIT Press 1990
- Μπίρης Τάσος, Αρχιτεκτονικής σημάδια και διδάγματα. Στο ίχνος της συνθετικής δομής, ΜΙΕΤ, Αθήνα 1996
- Neufert Ernst. Οικοδομική., Γκιούρδας, Αθήνα 2000
- Πεπονής, Γιάννης Χωρογραφίες, Ο αρχιτεκτονικός σχηματισμός του νοήματος, Αλεξάνδρεια, Αθήνα 1997
- Φατούρος, Δημήτρης Ένα συντακτκό της αρχτεκτονικής σύνθεσης, Παρατηρητής,
 Θεσσαλονίκη 1995
- Hertzberger, Herman Lessons for students in architecture, Uitgeverij 010 publishers, Rotterdam, 1991
- Rowe, Colin: "The mathematics of the ideal villa" in The mathematics of the ideal villa and other essays, MIT Press 1997
- Τζώνος Π., Αρχιτεκτονικός Σχεδιασμός / Τι είναι αυτό; ο πειρασμός μιάς θεωρίας, Παπασωτηρίου, Αθήνα 1996
- Τσακόπουλος Π., ΑΝΑΓΝΩΣΕΙΣ της ελληνικής μεταπολεμικής αρχιτεκτονικής, Εκδόσεις Καλειδοσκόπιο, Αθήνα 2014

-Major Architect's Monographs

- Αρβανίτη- Κρόκου, Λέττη Για τον Κυριάκο Κρόκο, ενθύμηση, Ίκαρος 2008
- Boesiger, W., Girsberger H. Le Corbusier 1910-1965, Artemis, Zurich 1993
- Dal Co, Francesco Tadao Ando Complete work, Phaidon Press, 1995
- Δεκαβάλλας Κωνσταντίνος Από τη μεγάλη κλίμακα στη μικρή, Κατάλογος έκθεσης
 Μουσείο Μπενάκη, Αθήνα 2008
- Καλαφάτη, Ελένη Παπαλεξόπουλος, Δημήτρης, Τάσος Χ. Ζενέτος Ψηφιακά οράματα και αρχιτεκτονική, Libro, 2006
- Καρδαμίτση Αδάμη, Μάρω Ο αρχιτέκτων Κλέων Κραντονέλλης, Μουσείο Μπενάκη, Αθήνα 2009
- Κωνσταντινίδης, 'Αρης, Μελέτες και κατασκευές Άγρα, Αθήνα 1992

- Πικιώνης Δημήτρης, Μια συναισθηματική τοπιογραφία, Architectural Association, 1989
- Rossi, Aldo Επστημονική Αυτοβιογραφία, Εστία 1995
- Μονογραφία, Τάκης X Ζενέτος 1926-1977, Αρχτεκτονικά θέματα, Αθήνα 1978
- Μονογραφίες TASCHEN Louis Kahn 1901-1975, Hans Scharoun etc
- Συλλογικό έργο Αρχιτεκτονική Ιδέες που χάνονται, ιδέες που συναντιούνται, Παπασωτηρίου, Αθήνα 2004

-Περιοδικά

Αρχιτεκτονικά θέματα Δομές El Croquis

-Ταινίες

Bêka, Ila, Lemoine, Louise: Koolhaas Houselife (2013) Cohn, Jason, Jersey, Bill : Eames: The Architect and the Painter (2011) Kahn, Nathaniel My architect, documentary film (2003) Koolhaas, Thomas: REM (2016) Wachtmeister, Jesper Kochuu: Japanese Architecture (2003) Wolf, Barbara: Philip Johnson: Diary of an Eccentric Architect (1997)

-Ιστοσελίδες

www.archisearch.gr www.architectural-review.com www.domesindex.com www.dezeen.com

GEO7100 – SOIL MECHANICS AND FOUNDATIONS

COURSE OUTLINE: GEO7100 - SOIL MECHANICS AND FOUNDATIONS

(1) GENERAL

SCHOOL		ENGINEERING		
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERING			
LEVEL OF STUDIES		-		
COURSE CODE	Undergradu	ale	SEMESTER 7 th	
COOKSECODE	GEO7100		SEIVIESTER /	
COURSE TITLE	SOIL MECHA	ANICS AND FO	UNDATIONS	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	ents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHIN GHOURS	CREDITS
		Lectures	4	
			0	
		Lab exercises		
		Total	4	5
COURSE TYPE	General bac	kground		
PREREQUISITE COURSES:	Preferred pr materials	erequisite kno	wledge: <i>Mechani</i>	cs of
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (Eng	glish)		
COURSE WEBSITE (URL)	https://eclas c=75	s.uniwa.gr/mo	dules/auth/open	courses.php?f

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

This a dual course that combines knowledge of soil mechanics with the design of foundations. Upon successful completion, the students will be able to:

- Differentiate between the various categories of soils and their geological characteristics
- Understand the mechanical response of the various soils and problems associated with the ingress of water
- Develop their understanding of soil movement and soil improvement methods
- Understand the basic principles of Eurocode 7 and limit state design
- Choose between the various types of shallow foundations the most suitable for a given soil profile

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Decision-making
- Working independently
- Team work
- Criticism and self-criticism
- Production of free, creative and inductive thinking

(3) SYLLABUS

Soil Formation and Nature
Soil Particles
Soil Structure
Soil Description and Classification
Permeability
Groundwater Flow problems
Stability problems
Seepage
Total head, elevation head and pressure head
Pore pressure and uplift pressure
Effective Stress and Pore Pressure
Total stress
Pore pressures below the water table
Present state of stress in the ground
Contact Pressure and Stress Distribution
Uniform loading
Point loading
Stress distribution
Stresses beneath point load and line load
Stresses beneath uniformly loaded areas
Principle of superposition
Stresses beneath flexible area of any shape
Eurocode 7 Limit state analysis

Compressibility and Consolidation
Shear Strength
Mohr – Coulomb failure criterion
Shallow Foundations - Settlements
Isolated footings & combined footings
Strap footings
Raft/mat foundation
Diaphragm walls

Lab Part of the Course-

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-Face	Face-to-Face			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Utilization of E-class UNIWA platform (file exchange among professors and students) Videos 				
TEACHING METHODS	Activity	Semester workload			
The manner and methods of teaching are described in detail.	Lectures	52 (13 X 4)			
The student's study hours for each learning	Study and analysis of	52 (13 X 4)			
activity are given as well as the hours of non-	bibliography				
directed study according to the principles of the ECTS	Laboratory practice	-			
	Lab exercises	-			
	Educational visits	-			
	Course total	104			
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure	Language of evaluation: Gre	ek			
	Methods of evaluation:				
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.					

(5) ATTACHED BIBLIOGRAPHY

Barnes G. E. 1995. Soil Mechanics - Principles and Practice-Macmillan Education UK
 Burland, J. B. and Chapman, T. 2012. ICE manual of geotechnical engineering -ICE

Publishing 35. Lecture notes

GEO7110 – PHYSICAL GEODESY

COURSE OUTLINE: GEO7110 - PHYSICAL GEODESY

(1) GENERAL

SCHOOL	ENGINEERIN	ENGINEERING		
ACADEMIC UNIT	SURVEYING	SURVEYING AND GEOINFORMATICS ENGINEERING		
LEVEL OF STUDIES	UNDERGRA	DUATE		
COURSE CODE	GEO7110	GEO7110 SEMESTER 7 th		
COURSE TITLE	PHYSICAL GEODESY			
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	nents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHIN GHOURS	CREDITS
	Lectures 3 4			4
	Labora	atory exersices	1	1
		TOTAL	4	5
COURSE TYPE	Specialized	general		
PREREQUISITE COURSES:	No prerequi	site courses ne	eded	
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes (English)			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr /courses/GEO190			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Basic course goals:

- Gravity field estimation methods and relations with the Surveyor science
- Observation corrections and reductions due to the gravity field effect
- Connection with the vertical datum definition
- Algorithms of spherical harmonics expansion. Analysis and Synthesis
- Combination of GNSS and gravity observations in height estimation
- Heterogeneous data combination in gravity and geoid modelling

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information,
- with the use of the necessary technology
- Decision-making
- Working independently
- Working in an international environment
- Production of new research ideas
- Production of free, creative and inductive thinking

(3) SYLLABUS

Earth's gravity field parameters, Newtonian attraction field, Earth's gravity field and its components. Geodetic boundary value problems and the solutions. Classical Stokes' solution. Modern Molodensky approach. Local and geocentric reference system. Gravity data reductions in geoid modelling. Gravity field dedicated satellite missions. Gravity reductions and anomalies. Height systems. Spherical harmonics and geopotential earth models. The geoid. Basic methodologies of gravity field and geoid estimation using spectral and stochastic methods. Geoid estimations using surface and satellite data. GNSS levelling.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY.	Face-to-face		
USE OF INFORMATION	e-class, software development, communication with		
ANDCOMMUNICATIONS	students through e-class		
TECHNOLOGY			
Use of ICT in teaching, laboratory education, communication with students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	52	
	Laboratory practice	58	
The student's study hours for each learning	Study and analysis of	40	
activity are given as well as the hours of non- directed study according to the principles of the	bibliography		
ECTS	Course total	150	
STUDENT PERFORMANCE	The final course evaluation is	based on written	
EVALUATION	examination (70%) and labor	atory work (30%)	
Description of the evaluation procedure			
	Language of evaluation: Gree	ek (English if needed, e.g.,	
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Erasmus+ students)		
statents.	Written examination with she	ort-answer questions,	
	problem solving and laborate	•	

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Heiskanen W. A., Moritz H., 1967. Physical Geodesy. Freeman & Co, San Francisco.
- Hofmann-Wellenhof B. and H. Moritz. 2005. Physical Geodesy. Springer eds.
- Moritz H. 1989. Advance Physical Geodesy. Wichmann eds.
- Torge W., 2001. Geodesy. 3rd Edition. Walter de Gruyter, Berlin.
- Torge W. 1989. Gravimetry. Walter de Gruyter, Berlin.
- Vanicek P., Krakiwsky E., 1992. Geodesy: The Concepts. Elsevier, New York.

- Related academic journals:

- Journal of Geodesy
- Journal of Geodetic Sciences
- IAG Series publications

GEO7120 – APPLIED GEOPHYSICS

COURSE OUTLINE: GEO07120 - APPLIED GEOPHYSICS

(1) GENERAL

SCHOOL ENGINEERING				
ACADEMIC UNIT	SURVEYING AND GEOINFORMATICS ENGINEERING			
LEVEL OF STUDIES	UNDERGRAD	UATE		
COURSE CODE	GEO7120		SEMESTER 7 th	
COURSE TITLE	APPLIED GEO	OPHYSICS		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	nents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHIN GHOURS	CREDITS
LECTURES 3 4			4	
LABORATO	RY EXERCISE:	S - FIELDWORK	1	1
		TOTAL	4	5
COURSE TYPE	skills develop	oment		
PREREQUISITE COURSES:	No			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:				
IS THE COURSE OFFERED TO ERASMUS STUDENTS				
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/GEO207/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Upon successful completion of the course, students are expected to:

- Recognize the different methods of subsoil geophysical research (surveys) currently used with examples from their application to tracking various objectives of excavation interest (archeometry), technical interest (design of technical projects) as well as in the investigation of complex geodetic and territorial structures formations for hydrological applications
- Distinguish between design requirements and expected geophysical results in the context of tackling a geological problem in relation to geophysical properties of the "target" and the selection of the appropriate method.
- Calculate the "resolution" of geophysical methods but also the way with which the measurements are taken.
- Combine the results of geophysical and geological data and evaluate results.
- compose high-resolution subsoil maps using advanced methods of graphic editing
- Support decision-making of excavation or technical interest using soundings' results
- Know the basic geophysical organology and field measurement techniques

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search, analyze and synthesize data and information, using both necessary technologies
- Project planning & management
- Autonomous work in an interdisciplinary environment
- Promotion of free, creative and inductive thinking
- Decision making
- Time management Working with deadlines

(3) SYLLABUS

- Introduction Basic concepts of geophysics.
- Geophysical surveys (Introduction, basic principles and constraints)
- Seismic surveys (seismic refraction, seismic reflection, seismic tomography), Equipment - Measurements - processing - interpretation and evaluation. Applications in problems of topographic engineer interest.
- Geoelectric surveys (Introduction, theoretical foundation), Vertical and lateral electrical resistivity distribution, geoelectric tomography. Equipment. Measurements, processing, interpretation and evaluation. Applications in geoenvironmental, geotechnical, etc. problems.
- Electromagnetic (EM) observations (Introduction, Theoretical Foundation, Propagation and electromagnetic field attenuation). EM Controlled Source Methods, horizontal Frequency Field Imaging (VLF), Vertical Time Field Imaging (TDEM), Ground penetration radar (GPR). Measurements, processing, interpretation and evaluation. Examples and applications.
- Illustrations of high resolution results with advanced processing graphic methods

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face	
	 Practical training in ICT lab 	
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Use of ICT in teaching (PowerPoint presentations, videos) Use of an asynchronous e-learning platform (e-class) Use of messaging and social media as additional 	
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are described in detail.	Lectures	39
Lectures, seminars, laboratory practice,	Personal study and analysis	30
fieldwork, study and analysis of bibliography,	of bibliography	
tutorials, placements, clinical practice, art workshop, interactive teaching, educational	Fieldwork - practice	13
visits, project, essay writing, artistic creativity,	Laboratory preparation and	35
etc.	essay writing	
	Project	33

The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Course total	150
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure	Assessment language: Greek students upon request)	(English for ERASMUS
summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are	 difficulty, which include so open-ended questions ar Evaluation of laboratory from fieldwork 	of the final grade) of graded short-answer questions, nd solving simple problems. work (30% of the final grade)
	students before the final ex	ve been presented to the amination. Students can see t and receive clarifications on

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography (in Greek):

1. Εφαρμοσμένη Γεωφυσική, Τσελέντης Άκης, Παρασκευόπουλος Π., 2018

2. Εισαγωγή στην εφαρμοσμένη γεωφυσική, Παπαζάχος Β. Κ. , 2011

3. Εισαγωγή στη γεωφυσική, Παπαδόπουλος Ταξιάρχης - Αθήνα : Εκδόσεις Νέων Τεχνολογιών,2010.

- Suggested bibliography (in English):

1. Milsom, M., Filed Geophysics, 4th edition, Heal link Wiley ebooks, 2011

2. Qingyun Di, GuoqiangXue,Jianghai Xia, Technology and Application of Environmental and Engineering Geophysics, HEAL-Link Springer ebooks, 2017

GEO7130 – APPLIED OPTICS AND LASER TECHNOLOGIES

COURSE OUTLINE: GEO07130 - APPLIED OPTICS AND LASER TECHNOLOGIES

(1) GENERAL

SCHOOL	ENGINEERIN	G		
ACADEMIC UNIT	SURVEYING AND GEOINFORMATICS ENGINEERING			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	GEO7130		SEMESTER 7 th	
COURSE TITLE	APPLIED OP	FICS AND LASE	R TECHNOLOGIE	S
if credits are awarded for separate compor laboratory exercises, etc. If the credits are	NT TEACHING ACTIVITIES barate components of the course, e.g. lectures, the credits are awarded for the whole of the dy teaching hours and the total credits CREDITS GHOURS		CREDITS	
LECTURES 3		3		
LABORATORY EXCRCISES 1 1		1		
TOTAL 4 5		5		
COURSE TYPE skills development				
PREREQUISITE COURSES:	PHYSICS II (ELECTROMAGNETISM AND OPTICS)			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	. == (=::==:;			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/TOP176/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The main objectives of this course is the specialization of students' knowledge and the acquisition of skills in selected technological applications topics based on the interaction of radiation with matter, optical instruments and complex optical systems technologies, laser technologies and photonics.

Upon successful completion of the course students will be able to:

- explain to non-experts the interaction of radiation with matter taking into account elements from quantum mechanics,
- design complex optical systems and identify their characteristics,
- critically evaluate the different types and technologies of lasers, their operation characteristics and their applications in industry, in telecommunications, in information technologies, in remote sensing and geoinformatics,
- identify the characteristics of fiber optics and evaluate their applications in optical communications,
- identify and critically evaluate interferometry techniques and their applications,
- determine the characteristics of spectrometers, radiation detection and spectral analysis technologies,
- analyze and take advantage of upcoming technological developments in the field of

photonics and critically evaluate their effect on geoinformatics, information technologies and telecommunications,

- evaluate bibliographic sources for the study of research topics in various scientific areas of Optics and Lasers,
- collaborate with their colleagues for the preparation and presentation of an experimental project.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information,
- with the use of the necessary technology
- Adapting to new situations
- Working independently
- Team work
- Decision-making
- Working in an interdisciplinary environment
- Production of new research ideas

(3) SYLLABUS

Theoretical part:

- Advanced topics of geometrical optics, lenses, aberrations, composite optical systems, matrix theory.
- Radiation-Matter Interaction: introduction to the quantum structure of matter, optical properties of materials, energy zones, optical absorption mechanisms, fluorescence spontaneous emission of radiation, scattering, refraction, reflection, polarization of light, Fresnel equations, atmospheric optics.
- Fiber optics & waveguides: light propagation, fiber optics and applications, optical communications, optical information transmission, optical modulation.
- Interference-Diffraction: optical coherence, interferometers and applications, diffraction (Fresnel and Fraunhofer), Fourier spectroscopy.
- Photometry, light sources and radiation laws.
- Optical instruments, detectors and applications: microscope, electron microscope, telescope, spectral analysis and applications, spectrographs, Fourier optics, light detection and recording systems, signal amplifiers, photomultipliers and ICCD devices, thermal imaging-thermography, hyperspectral cameras.
- Introduction to laser technology: Einstein coefficients, stimulated emission, amplification, population inversion, optical cavities-resonators, properties of laser radiation, laser beam propagation.
- Laser systems: common laser types, continuous wave lasers, pulsed lasers, laser operation parameters, Q-switching, laser safety, non-linear optics, laser applications, optical beam control technologies-laser scanners.
- Introduction to modern photonics, quantum optics, quantum computing, quantum computers, quantum cryptography.

Laboratory part:

Study of laser beam propagation properties, spectrometry of known and unknown light sources, safety - protection from laser radiation, laser scanners, laser beam interference and diffraction, optical communications – fiber optic cable signal attenuation and dispersion.

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face	
ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Use of ICT in teaching (PowerPoint presentations και PDF) • Use of an asynchronous e-learning platform (e-class). • Use of e-mail • Use of simulations for demonstration of natural phenomena and experiments. • Use of the Excel software in laboratory.	
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop,	study and analysis of	39 30
placements, chincal practice, art workshop,	laboratory practice	13

(4) TEACHING and LEARNING METHODS - EVALUATION

interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Research Project (literature review)35Laboratory preparation and essay writing (team work)33Course total150
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure	Assessment language: Greek (English for ERASMUS students upon request)
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	• Final Written Exam (60% of the final grade) of graded difficulty, which may include short-answer questions, open-ended questions

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

1. B. E. A. Saleh, M. C. Teich, 2007, Fundamentals of Photonics, Second Edition, John Wiley and Sons Ltd

- 2. Eugene Hecht, 2016. Optics, Pearson Education.
- 3. M. Young, 2000, Optics and Lasers, Springer-Verlag Berlin Heidelberg
- 4. Das, Pankaj K., 1991, Lasers and Optical Engineering, Springer-Verlag Berlin Heidelberg
- 5. Charles A. DiMarzio, 2011, Optics for Engineers, CRC Press

- Related academic journals:

- 1. Applied Optics, Optical Society of America Publishing
- 2. Advances in Optics and Photonics, Optical Society of America Publishing
- 3. Journal of Physics B: Atomic, Molecular and Optical Physics, IOP Publishing
- 4. Journal Of Optics A: Pure and Applied Optics, IOP Publishing

5. IEEE Photonics Journal, IEEE

6. Laser Physics, IOP Publishing

GEO7140 – SYSTEM THEORY, SDB AND ELECTRONIC MAPS AND INFORMATION SYSTEMS (ECDIS)

COURSE OUTLINE: GEO7140 - SYSTEM THEORY, SDB AND ELECTRONIC MAPS AND INFORMATION SYSTEMS (ECDIS)

(1) **GENERAL**

SCHOOL	School of En	School of Engineering			
ACADEMIC UNIT	Surveying and Geoinformation Engineering				
LEVEL OF STUDIES	Undergraduate – Level 7				
COURSE CODE	GEO7140		SEMESTER	7 th	
COURSE TITLE	SPECIAL TO	PICS OF SPATI	AL DATABASE	S AND	SYSTEM
	THEORY (SYS	TEM THEORY	, SDB AND EL	ECTRO	NIC MAPS
	AND INFORM	ATION SYSTE	MS (ECDIS)		
INDEPENDENT TEACHI		•	WEEKLY	(
if credits are awarded for separate compor laboratory exercises, etc. If the credits an	-		TEACHIN	G	CREDITS
course, give the weekly teaching ho	-	-	HOURS		
	Theory			4	
	Theory 3 4 Laboratories Exercises 2 2				
	Total 5 6				
COURSE TYPE	Special Background				
PREREQUISITE COURSES:					
	There are no prerequisite courses.				
LANGUAGE OF INSTRUCTION and	Greek - English (for ERASMUS students) - French (for				
EXAMINATIONS:	ERASMUS students)				
IS THE COURSE OFFERED TO	YES (In English and French)				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/TOP104/				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The course aims at

A.Knowledge

- In-depth understanding and learning of all stages of creating Spatial Databases (including "spatila databases of multiple scales"), the analysis and design of information systems (IS) and spatial information systems (SIS), the modeling of space-time.
- Understanding and learning the basic methodologies of analysis and design of IS. Their application in the analysis and design of SIS.
- Understanding the parts and functions of an ECDIS. Understand how ENC (Electronic Navigational Charts) and AIS (Automatic Identification Systems) operate within an ECDIS.
- Understanding and learning normalization and relational algebra.

- Learning the ways of integrating SDB in IS.
- Learning the modeling of data, actions and decision-making procedures. Understanding advanced concepts and applications of the O / S and UML model.

B.Skills

• Apply all of the above to specific examples of system development.

C.Abilities

• Skills for analysis, design, creation, control, and creation of metadata of DB and SDB using CASE-tools in any case (new system, replacement of older system, partial system change, merger / evolution of systems, etc.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Taking into account the general skills that the graduate must have acquired, the course aims at:

- 12. To understand a) the design, development, implementation and control of BXD and (Spatial) Information Systems, b) the integration of SDB in such systems c) the complex role of CASE-tools in the design of SDB.
- 13. Understanding the operation of ECDIS and the GPS systems (Global Positioning System), AIS (Automatic Identification System) and ENC (Electronic Navigational Charts) that integrates in a complete way and familiarity with the ways of creating and updating its spatial databases. Familiarity with air navigation systems (basic concepts).
- 14. In adapting to new situations that require the creation of complex spatial information through new techniques and tools.
- 15. In making decisions regarding the correct choice of data, techniques and tools for the creation and discovery of new information through a large volume of spatial and other data.
- 16. In autonomous work through the theoretical development and practical elaboration of issues related to advanced SDB concepts and practices aimed at developing skills necessary for SDB design and development studies and Information Systems.
- 17. In teamwork aimed at the theoretical development and practical elaboration of issues related to advanced SDB concepts and practices aimed at developing skills necessary for SDB design and development studies and information systems in a team environment where collaboration is necessary.
- 18. The ability to work in an international environment supported by learning both "standardized knowledge" SDB and I (C) S taught in most universities around the world and by using and learning English and French IS / SDB / SD terminology.
- 19. In the work in an interdisciplinary environment supported by the nature of the course of SDB and SD that is directly related to computer projects, three-dimensional representation of objects, environmental protection, etc.
- 20. In the production of new research ideas that is supported and developed through a) individual and group work but also b) by informing about the research programs of the Department in relation to the SDB and SD and the possibilities of students' participation in them.
- 21. In the design and management of development projects, information and control of SDB and SD.
- 22. Demonstrating social, professional and ethical responsibility in data and software copyright issues.
- 23. In the exercise of evaluation, self-evaluation and development of critical ability through the presentation day of the semester assignments (individual and group).
- 24. In the promotion of free, creative and inductive thinking.

(3) SYLLABUS

Theoretical part- Lectures

System: Basic concepts, principles, definitions. The parts of a system. Systemic theory and the Cartesian approach.

Systems of different types and systems of different levels. The perfect system. Information -Procedure - Decision. Production systems - Information systems - Decision systems. The concept of the system for the Surveyor engineer and his profession.

Life cycle and development cycle of a system.

Systems Analysis and Design - Systems Implementation. Tools and theories for the design and implementation of systems, and in particular information systems. Examples and applications of systems.

Models of representation of reality. Basic concepts of space-time and possibilities of its modeling. Spatial Databases. Types of entities and types of relationships. Topology - Topological relations.

ECDIS definition. ECDIS Parts. Completion of ENC (Electronic Navigational Charts), GPS (Global Positioning System), AIS (Automatic Identification Systems). ECDIS types and features. ECDIS and G.U.I. (Graphic User Interface) utility of ECDIS. Nautical charts and ECDIS. RNC (Raster Nautical Charts). VNC (Vector Nautical Charts). RNC and ENC (Electronic Charting System). ECDIS and ECS. ENC toponyms and borders sources of an ENC. ENC and RNC differences. NOAA ENC online. Vessel Finder. AIS Greece. Marine Traffic. AIS Marine Traffic ship map. Real time AIS Vessel Tracker with ship and Port Database. Real-time AIS terrestrial and satellite system.

Basic concepts of air navigation systems.

Computational Geometry and its applications in Spatial Databases.

Spatial digital databases and management systems - Design levels - Peculiarities of Spatial Databases and their design.

Entity / Relation and UML.

Spatial / Cartographic / Geographical / Spatial questions and answers.

Data Warehouse and Spatial Data Warehouse. Data Mining / Spatial Data Mining. SDB and decision making.

Conceptual design of Spatial Databases and CASE - tools. Comparative presentation of conceptual models.

Spatial Databases of multiple scales / multiple representations. Suggested solutions and unsolved problems.

Metadata and data dictionaries for Spatial / Cartographic Databases

multiple scales. Tools offered. Unanswered questions.

Integration of Spatial Databases into Systems (actions / processes / production,

information, decisions): their roles and their interrelationships.

Correlation of spatial and alphanumeric databases within Systems. Critical presentation of the offered solutions.

Virtual and augmented reality: their application and uses in DB / SDB

Laboratory Exercises

Consolidation and practical application of the concepts as mentioned in the theoretical part, through the execution of exercises on PC. Specifically, the aim of the laboratory exercises is to get acquainted with ECDIS, with systems design tools and SDB, to get acquainted with the advanced SDB techniques and the use of CASE-tools

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Blended learning:		
	c		
	A: Classroom lectures (Face to face learning)		
	B: Distance learning through e-class platform		
	(training materials, exercises, data, software,		
	reductions, etc.)		
USE OF INFORMATION	Slides, use of softwares, softv	ware, video, use of	
ANDCOMMUNICATIONS	internet, smart phones, Table	et, GPS / GIS handheld.	
TECHNOLOGY	Use of specialized software to	ools and libraries	
Use of ICT in teaching, laboratory education,	(commercial and open source	e) for the management and	
communication with students	processing of numerical and	geospatial data	
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are	Lectures	13 X 3 = 39 hours	
described in detail.	Seminars (by invited	5 hours preparation of	
The student's study hours for each learning	speakers)	questions by groups	
activity are given as well as the hours of non- directed study according to the principles of the		2 X 13 = 26 hours	
ECTS	Preparation of an individual	16 hours	
	study		
	Educational presentation of 15 hours		
	the works		
	Course preparation / weekly	39 hours (preparation)	
	study		
	Course total	140 hours	
STUDENT PERFORMANCE	Language of assessment:		
EVALUATION	Greek or English or French ((for ERASMUS students)		
Description of the evaluation procedure	Evaluation methods:		
		nination at the end of the	
Specifically-defined evaluation criteria are	are semester: 60%		
given, and if and where they are accessible to students.		xercises / Field Exercises:	
students.	20%		
		dy and presentation: 20%	
		and presentation. 2070	

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Pantazis D., Donnay J-P, 1996, La conception de SIG, methode et formalisme, Editions HERMES, Paris.Shashi Shekhar and Sanjay Chawla, 2003, Spatial Databases: A Tour, Prentice Hall.
- *Rigaux & Scholl & Voisard, 2001, Spatial Dαtabases, Morgan Kaufmann.*
- Albert K. W. Yeung, G. Brent Hall, 2007, Spatial Database Systems: Design, Implementation and Project Management, Springer.
- Michael Havey , 2005 , Essential business process modeling , O' Reilly Media Inc. , Gravenstein Highway North Sebasatopol , CA , US .
- Ian T. Cameron, Katalin Hangos, 2001, Process Modelling and Model Analysis, Academic Press, San Diego, CA, US.
- Sandra Lach Arlinghaus , Joseph J. Kerski ,2014, Spatial mathematics-Theory and practice through mapping , Taylor & Francis Group , Boca Raton, FL, US .

- Dominique de Werra , 1990, Elements de programmation lineaire avec application aux graphes , Presses polytechniques romandes , Lausanne .
- Robert Damelio , 2011, The basics of process mapping , 2nd edition , Productivity Press , Third Avenue , NY, US .
- Alec Sharp , Patrick McDermott , 2009, Workflow modeling Tools for process improvement and application development , 2nd edition , Artech House Inc. , Canton str., Norwood , MA, US .
- Theodore Panagacos, 2012, The ultimate guide to business process management-Everything you need to know and how to apply it to your organization, Theodore Panagacos, San Bernardino, CA, US.
- Patricia Wallace, 2014, Πληροφοριακά συστήματα διοίκησης Άνθρωποι, τεχνολογία, διαδικασίες, Εκδόσεις Κρητική, Νευροκοπίου 8, Αθήνα, μετάφραση από Patricia Wallace, 2013, Information systems in organization –People, technology and processes, Pearson Education Inc, Upper Sadle River, New Jersey
- Kenneth C. Laudon, Jane P. Laudon, 2011, Πληροφοριακά συστήματα διοίκησης, 8η έκδοση, Εκδόσεις Κλειδάριθμος, Αθήνα, μετάφραση από Kenneth C. Laudon, Jane P. Laudon, 2009, Essentials of management information systems, 8th edition, Pearson Education Inc, Upper Sadle River, New Jersey
- David Arctur, Michael Zeiler, 2004, Designing geodatabases- Case studies in GIS data modeling, ESRI, Redlands, CA, US.
- Κωστής Κουτσόπουλος, Νικόλαος Ανδρουλάκης, 2012, Γεωγραφικά συστήματα πληροφοριών με το ArcGIS 10 –Θεωρία και πράξη, Εκδόσεις Παπασωτηρίου, Λεωφ.
 Κηφισού, Αθήνα.
- Michael Havey , 2005 , Essential business process modeling , O' Reilly Media Inc. , Gravenstein Highway North Sebasatopol , CA , US .
- Ian T. Cameron, Katalin Hangos, 2001, Process Modelling and Model Analysis, Academic Press, San Diego, CA, US.

- Related academic journals:

- Wiley online library published by John Wiley & Sons Ltd Edited By: Robert Davison, Philip Powell & Eileen Trauth Impact Factor: 1.381 ISI Journal Citation Reports © Ranking: 2012: 22/85 (Information Science & Library Science) ISSN: 1365-2575 http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2575
- Information System published by ELSEVIER B.V. Impact Factor: 1.768 Thomson Reuters Journal Citation Reports 2013 ISSN: 0306-4379 <u>http://www.journals.elsevier.com/information-systems/</u>
- Computer Science and Information Systems published by ComSIS Consortium Impact factor Two-year impact factor (2012): 0.549 ISSN: 1820-0214 <u>http://www.comsis.org/</u>
- European Journal of Information Systems published by Macmillan Editor-in-Chief: Frantz Rowe, France Editors: Par Agerfalk, Sweden Dov Te'eni, Israel 2012 5-year Impact Factor:2.422 ISSN: 0960-085X <u>http://www.palgravejournals.com/ejis/index.html</u>
- International Journal of Spatial, Temporal and Multimedia Information Systemspublished by Inderscience Publishers Editor in Chief: Prof. Wassim Jaziri ISSN online: 2052-3564 ISSN print: 2052-3556 <u>http://www.inderscience.com/jhome.php?jcode=ijstmis</u>
- International Journal of Spatial Data Infrastructures Research published by European Commission ISSN: 1725-0463 http://ijsdir.jrc.ec.europa.eu/index.php/ijsdir
- JEDM –Journal of educational data mining Editor : Michel C. Desmarais Associate

Editors : Ryan S. Baker , Agatha Merceron , Mykola Pechenizkiy , Kalina Yacef, ISSN: 2157- 2100 <u>http://www.educationaldatamining.org/JEDM/index.php/JEDM</u>

- Data Mining and Knowledge Discovery- published by Springer Editor-in-Chief: Geoffrey
 I. Webb 2012 Impact Factor: 2.877 ISSN: 1384-5810 (print version) ISSN: 1573-756X
 (electronic version)
 http://www.springer.com/computer/database+management+%26+information+retrie
 val/journal/10618
- Taylor, Orders & Weintrit, Adam & Adam,. (2009). THE ELECTRONIC CHART DISPLAY AND INFORMATION SYSTEM (ECDIS) AN OPERATIONAL HANDBOOK.
- Barlett, D. and Wright, D., 2002. Marine And Coastal Geographical Information Systems. Abingdon: CRC Press [Imprint].
- Pallikaris, Athanasios. (2016). Γενικά χαρακτηριστικά και βασικές λειτουργίες συστημάτων ECDIS.

-Useful Webpages

<u>http://www.itl.nist.gov/div898/handbook/index.htm</u> <u>http://www.businessballs.com/business-process-modelling.htm</u> <u>http://dna.fernuni-hagen.de/papers/IntroSpatialDBMS.pdf</u> <u>http://sevenseas-marine.com/wp-content/uploads/2015/07/ECDIS-Complete-brochure-preview.pdf</u>

GEO7160 – Cadastral, Urban Planning & Infrastructure Systems

(1) **GENERAL**

SCHOOL	SCHOOL OF ENG	INEERING		
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS ENGINEERING			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	GEO703 SEMESTER 7th			
COURSE TITLE	Cadastral, Urban Planning & Infrastructure Systems			
INDEPENDENT TEACHIN if credits are awarded for separate compo- laboratory exercises, etc. If the credits ar course, give the weekly teaching he	onents of the course, e.g. lectures, are awarded for the whole of the			CREDITS
		Lectures	3	3
Project		1	2	
Total 4 5			5	
Add rows if necessary. The organisation of methods used are described in detail at (d).	essary. The organisation of teaching and the teaching re described in detail at (d).			
COURSE TYPE general background, special background, specialised general knowledge, skills development PREREQUISITE COURSES:		nd/ skills developmen	t	
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/modules/auth/opencourses.php?fc=75			

(6) **LEARNING OUTCOMES**

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Worldwide, cadastral systems, are the only systems that document 3D Rights -Rules -Regulations relevant to immovable things. Official administrative acts, such as urban plans, sea-shore declaration, expropriations, forest areas declaration etc., produce institutional spatial data imposing specified rules or/and restriction on immovable things. Spatial and descriptive correlation of rules and restrictions, imposed by institutional spatial data, to rights on immovable things and their integration to the current Hellenic Cadastre Data Base is of great importance.

By attending this course students acquire specialized knowledge on multipurpose cadastral system in which spatial and descriptive data of institutional spatial data are presented in detail. Focus on integrated data management with use of GIS and relevant data bases is given. Students are encouraged to use knowledge acquired by other courses such as, Cadastre, Urban Planning, Topography, 3D modeling, GIS.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information,	Project planning and management
with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adaption to new work conditions
- Decision-making
- Team work
- Self/ team evaluation
- Free, creative and inductive thinking

(7) SYLLABUS

- i. Multipurpose cadastral system
- ii. 3D Cadastre
- iii. Research of official administrative acts
- iv. Spatial/ descriptive analysis of official administrative acts
- v. Spatial/ descriptive integration of official administrative acts and the Hellenic Cadastre Technical Specifications
- vi. Integration problems (record and analysis)
- vii. 3D modeling of administrative acts

DELIVERY	Face-to-Face				
Face-to-face, Distance learning, etc.					
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Web search (legislation and literature review) E-class UNIWA platform and office Microsoft 365 UNIWA tools (TEAMS, Class Notebook, Shared docs, email) GIS and CAD software Office software (word, presentations, spreadsheets editors) 				
TEACHING METHODS	Activity	Semester workload			
The manner and methods of teaching are	Lectures (Theory – exercises)	52 (13*4)			
described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography,	Team project	73			
tutorials, placements, clinical practice, art workshop, interactive teaching, educational					
visits, project, essay writing, artistic creativity,					
etc.					
The student's study hours for each learning					
activity are given as well as the hours of non-					
directed study according to the principles of the ECTS					
	Course total	125			
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure	Technical report and oral presentation	of the team project			
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other					
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.					

(9) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

Legislation on Cultural Heritage Protection, Legislation on Urban Planning and Traditional Settlements, 3D Cadastre

- *Related academic journals:* MDPI Heritage, MDPI Land

GEO7170 – BUILDING CONSTRUCTION DESIGN. TECHNOLOGY & MATERIALS

COURSE OUTLINE: GEO7170 - BUILDING CONSTRUCTION DESIGN. TECHNOLOGY & MATERIALS

(1) GENERAL

SCHOOL	SCHOOL OF	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMEN	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN	IG			
LEVEL OF STUDIES	Undergradu	ate			
COURSE CODE	GEO7170		SEMESTER 7 ^{tl}	ı	
COURSE TITLE	Building Co	nstruction Desi	gn. Technology	and Materials	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	nents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHIN GHOURS	CREDITS	
			3		
		Lectures	1		
		Lab exercises			
			4	5	
		Total			
COURSE TYPE	In-depth, co	nsolidation of t	the specialty		
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (Eng	glish)			
COURSE WEBSITE (URL)	https://eclas	s.uniwa.gr/cou	rses/GEO268/		

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Building Construction focuses on the study and design of the construction elements and details of the buildings, so that they are functional and provide the required level of quality and safety during their construction phases and then during their use.

After the successful completion of the course, students are expected to:

o know the general principles of construction and to understand how they can contribute to the projects that topographic engineers have the right to implement.

o Understand the construction phases of a building project.

o Understand the function of the load-bearing structure and the individual components of a building project.

o know the properties and possible combinations of basic building materials.

o evaluate and select the best building materials, within the framework of architectural and construction needs

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

After the successful course attendance, students are expected to acquire the following General Competences:

- Search, analysis and synthesis of data and information, using the necessary technology
- Decision making
- Autonomous and team work
- Project design and management
- Respect for the natural environment
- Promoting free, creative and inductive thinking

(3) SYLLABUS

Theoretical part of the Course

- 1. Introduction to the object of building construction into the historical perspective.
- 2. Building construction's site elements and organization: demolition, excavations, scaffolding. Excavation diagram.
- 3. Excavations and foundation: waterproofing, drainage.
- 4. Structural design. Bearing and non bearing elements
- Masonry: types and materials of masonry construction according to the needs of thermal insulation, waterproofing and sound insulation. Interior and exterior masonry. Coatings and claddings. Types and materials of coating and cladding: marble, tile, wood, etc.
- 6. Thermal insulation, waterproofing and sound insulation.
- 7. Terraces and roofs: Thermal insulation and waterproofing. Formation of drains for water runoff.
- 8. Doors and windows: Internal and external. Types and materials. Selection Criteria.
- 9. Floors: The types and materials of floor construction. Interior and exterior floors. Elevations for floor construction. Exterior floor drainage solutions.
- 10. Staircases: The types and materials of construction. Geometric staircase design.
- 11. Reinforced concrete and its applications.
- 12. Steel, and other metals. Wood as a building material, applications.
- 13. Other technical materials and their applications in construction.
- 14. Solving construction problems. Preparation of a technical report.

Lab Part of the Course

• Detailed design of a small scale residential building

DELIVERY USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Utilization of E-class UNIWA platform (file exchange among professors and students) Email 		
TEACHING METHODS The manner and methods of teaching are described in detail. The student's study hours for each learning	Activity Lectures Study and analysis of	Semester workload 39 13	
activity are given as well as the hours of non-	bibliography		
directed study according to the principles of the ECTS	Homework	48	
	Detailed design (project)	50	
	Course total	150	
STUDENT PERFORMANCE	Language of evaluation: Gre	ek	

(5) **Recommended References**

- Αθανασόπουλος, Χρήστος Κατασκευή Κτιρίων, σύνθεση και τεχνολογία, Β' έκδοση, Αθήνα 1984
- 37. Aldinger, E., Bauman, G., Ignatowitz, E., Kluge, M., Lammin, G., Steinmuller, A., & Weinstock, H., μτφ. Βούλγαρη, Δ., Τεχνολογία Υλικών Κατασκευών, Αθήνα: Ευρωπαϊκές Τεχνολογικές Εκδόσεις, 1998.
- Γιάννας, Σ., Περιβαλλοντικός σχεδιασμός κτιρίων και περιβάλλοντος χώρου. Πάτρα: Ελληνικό Ανοικτό Πανεπιστήμιο, τόμος Α, 2001.
- 39. Ευθυμιάτος, Δ., Ήχος και φως, τεχνικές εγκαταστάσεις, ΕΜΠ, Αθήνα 1983
- 40. Ζάννος, Α.Ι. Σημειώσεις Οικοδομικής, ΕΜΠ, Αθήνα 1982
- 41. Ζάννος, Α.Ι. Αρχιτεκτονική μορφή και στατική λειτουργία, Αθήνα 1983
- 42. Ζαχαριάδης, Α., Οικοδομική Τεχνολογία. Θεσσαλονίκη: Παρατηρητής, 1993.
- 43. Καλογεράς, Ν., Κιρπότιν, Χ., Μακρής, Γ.,Παπαϊωάννου,Ι., Ραυτόπουλος, Σ.,Τζιτζάς, Μ., Τουλιάτος, Π.,: Θέματα Οικοδομικής, Συμμετρία, Αθήνα 1986
- 44. Καλογεράς , Ν., Σημειώσεις μαθημάτων προκατασκευής, Αθήνα 1980

- Κοντορούπης, Γ. Μ., Ηλεκτρομηχανολογικές εγκαταστάσεις κτιρίων και πόλεων, Αθήνα 1976
- 46. Κούκης, Σ., Σ., Δομική Τεχνολογία, Υλικά και Εφαρμογές. Αθήνα, 2001.
- 47. Μιχελής, Π. Η αισθητική της αρχιτεκτονικής του μπετόν αρμέ, Αθήνα 1975
- 48. Neufert Ernst. Οικοδομική., Γκιούρδας, Αθήνα 2000
- 49. Παπαλεξόπουλος, Δημήτρης, Σταυρίδου Αθηνά, Εννοιολογικός προσδιορισμός παραμετρικών ιδιοτήτων αρχιτεκτονικών κατασκευαστικών στοιχείων και δομικών υλικών. ΣΕΒΕ, σχολή Αρχιτεκτόνων Ε.Μ.Π. ,2010
- 50. Τζώνος Π., Τυπολογία της κατοικίας. Θεσσαλονίκη, 1983.
- Τουλιάτος Π., Ξύλινες και μεταλλικές κατασκευές, ΕΜΠ, Έδρα οικοδομικής, Αθήνα 1981
- 52. Wenderhorst, R., Τουλιάτος, Δ., Λεονταρίτης, Μ., Παπαγιάννης, Δ., & Μπίσμπος, Χ., (μτφρ). Δομικά Υλικά. Αθήνα: Εκδόσεις Μ., Γκιούρδας, 1981

GEO7180 – STRUCTURAL EQUIPMENT & CONSTRUCTION SITE MANAGEMENT

COURSE OUTLINE: GEO7180 – STRUCTURAL EQUIPMENT & CONSTRUCTION SITE MANAGEMENT

(1) GENERAL

SCHOOL	SCHOOL OF	ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS				
	ENGINEERIN	-			
LEVEL OF STUDIES	Undergradu	ate – Level 7			
COURSE CODE	GEO7180		SEMESTER 7 th		
COURSE TITLE	STRUCTURA	L EQUIPMENT	& CONSTRUCTIO	N SITE	
	MANAGEME	NT			
INDEPENDENT TEACHI		•	WEEKLY		
if credits are awarded for separate compor	-		TEACHIN	CREDITS	
laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	-	•	GHOURS		
	iurs unu the totur t	Lieuns			
			3		
		Lectures			
		Lab exercises			
		Total	4	5	
COURSE TYPE	Extra knowle	edge for the dis	cipline		
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Upon successful completion of the course, students are expected to:

o Understand the different types of construction equipment and machines and their use.

o Understand the principles of construction site design and be able to design basic construction site technical provisions.

o Calculate the productivity of the basic construction machines, as well as the execution time - completion of an earthmoving project.

o Understand the use cost of construction machinery and calculate the cost of earthworks.

o Calculate the required number of basic earthmoving machinery so that the project is completed within the contractual deadline.

o Calculate the required number of construction machines for the basic earthworks, in order to limit the unproductive times of the machines.

o Understand the basic principles of health & safety of construction projects & sites.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Upon successful completion of the course, students are expected to acquire the following General Abilities:

- Application of knowledge in practice.
- Search, analysis and synthesis of data and information, using the necessary technologies.
- Project design and management.
- Decision making.
- Adapting to new situations

(3) SYLLABUS

1. Overview of construction sites (construction categories, site characteristics, study of site layouts, stages and principles of site layout design, potential site installations, analysis - evaluation of construction site cases).

Overview of functional analysis (general principles, basic questions studied, key factors - (soil conversion factors, site employment rate, bucket fill factor, operating rate, etc.).
 Life cycle analysis of soil material (compacted - loose - compressed) and connection with the respective earthmoving machinery.

4. Productivity overview (definition, measurement of productivity, principles - stages of analysis and recording of productivity in technical projects, productivity of construction machines, alternative ways of measuring and estimating productivity of construction machines - analytical methods, methods of rapid estimation according to Komatsu, Caterpillar, empirical methods).

5. Overview of construction machinery (general presentation) and analysis of basic earthmoving machinery (excavator, loader, dozer, transport vehicle, grader, compacter, scraper, lifting equipment, concrete production units etc). Presentation of the different types of machinery and equipment available, the uses they serve and the factors that influence the choice of the appropriate type.

6. Analysis and application of the method of rapid calculation of the productivity of the basic earthmoving machinery (excavator, loader, dozer and transport vehicle) according to the Komatsu methodology.

7. Analysis of the economics of construction machinery (cost of ownership and operating costs). Cost calculation applications.

8. Functional analysis applications (calculation of time for completion of earthworks and costing of technical projects). Analysis of combined works e.g. loading and transporting of soil material, calculating the number of the required combination of machines for standard combined activities (excavator - loader / loader - transport vehicle) in order to complete the project within the required time with the minimum non-productive time in construction machinery.

9. Overview of safety of technical works. Health & Safety issues at construction sites.

DELIVERY	o Lectures - interactive teaching in the classroom.				
	o Encouraging students to prepare for the next lesson.				
	o Encouraging students to at	tend related Workshops,			
	Conferences, etc.				
USE OF INFORMATION	 Teaching using electronic 	presentation tools.			
ANDCOMMUNICATIONS	 Support of learning proce 	ess with asynchronous			
TECHNOLOGY	education platform.				
Use of ICT in teaching, laboratory education, communication with students					
TEACHING METHODS	Activity	Semester workload			
The manner and methods of teaching are described in detail.	Lectures	65			
The student's study hours for each learning	Lab exercises	25			
activity are given as well as the hours of non-	Independent Study	60			
directed study according to the principles of the ECTS					
	Course total 150				
STUDENT PERFORMANCE	Language of evaluation: Gre	ek			
EVALUATION					
Description of the evaluation procedure	Methods of evaluation:				
	Written exam at the end of the semester				
Specifically-defined evaluation criteria are	Examination of exerc	ises. (max 10%)			
given, and if and where they are accessible to students.	Mid-term examination	· /			

(5) ATTACHED BIBLIOGRAPHY

- Petroutsatou K., Marinelli M. (2018). Construction equipment, functional analysis and cost of civil engineering projects. 2nd edition ISBN 978-960-586-253-4. KRITIKI Publishing S.A.
- 2. Efraimidis X. (2002). Construction equipment, Athanassopoulos
- 3. Association for the Advancement of Cost Engineering AACE (2010). "AACE International Recommended Practice No. 10S-90 Cost Engineering Terminology".
- 4. Burke R. (2010). *Project Management, Tools & Techniques,* Burke Pubishing.
- 5. Burke R. *Project management, Principles & Techniques*, KRITIKI PUBLISHING S.A.
- 6. Gransberg D. (2006). *Construction Equipment Management for Engineers, Estimators and Owners*, Taylor and Francis.
- 7. Hegazy T. (2002). Computer-Based Construction Project Management, Prentice-Hall.
- 8. Komatsu. Specifications & Application Handbook Edition 30
- 9. Peurifoy, R. Oberlander G.D. (2014). *Estimating Construction Costs*, McGraw Hill.

GEO7190 – AGRICULTURAL DRAINAGE SYSTEMS

COURSE OUTLINE: GEO7190 - AGRICULTURAL DRAINAGE SYSTEMS

(1) GENERAL

SCHOOL	SCHOOL OF I	SCHOOL OF ENGINEERING			
ACADEMIC UNIT		DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN	ENGINEERING			
LEVEL OF STUDIES	Undergradua	ate			
COURSE CODE	GEO7190		SEMESTER 7 th		
COURSE TITLE	AGRICULTUF	RAL DRAINAGE	SYSTEMS		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	ponents of the course, e.g. lectures, s are awarded for the whole of the TEACHING CREDITS				
		Lectures	3		
	Lab exercises 1				
	Total 4			5	
COURSE TYPE	Special background, specialised general knowledge				
PREREQUISITE COURSES:	Not mandatory - Preferred prerequisite knowledge: Fluid mechanics, Applied Hydraulics, Engineering Hydrology				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	di een				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Not offered				
COURSE WEBSITE (URL)	https://eclas	s.uniwa.gr/cou	rses/GEO256/		

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

By the completion of the course, the students will be able to:

- ✓ Understand the crop-soil-atmosphere relationship;
- ✓ Estimate the crop evapotranspiration using empirical and physically based methods;
- Compute the water irrigation requirements, specific discharge, dose, frequency and duration of irrigation applications;
- Design the discharges of irrigation networks according to delivery systems of irrigation water;
- ✓ Apply the irrigation methods: surface, sprinkle and local (trickle irrigation);
- ✓ Design the irrigation networks;
- ✓ Understand the origin and quality of irrigation water and soil, as well as the suitability criteria of their use;
- ✓ Understand and design the functionality of irrigation pumps;

- Understand water measuring devices and their operation in irrigation systems
- Manage the irrigation water and environmental consequences coming from irrigation works.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

• Search for, analysis and synthesis of data and information, with the use of the necessary technology

- Adapting to new situations
- Decision-making, Criticism and self-criticism
- Working independently and Team work
- Production of free, creative and inductive thinking

(3) SYLLABUS

General description: Basic principles, design and operation of irrigation works. Irrigation water requirements, irrigation water delivery systems and crops irrigation methods, sources and quality of irrigation water and soil. Irrigation pumps, flow measurement devices, irrigation water management, environmental consequences, legislation of water resources availability.

More specifically, the course syllabus is summarized as follows:

1 Introduction: Basic principles and definitions. Historic evolution of irrigation studies and works.

2 Crops and irrigation: Crop-soil-atmosphere relationships. Measurement of soil water capacity, useful soil water capacity, description of root zone systems - crop water uptake. Methods of computing reference crop evapotranspiration (physically and empirically based). Crop growth stages, crop coefficient and actual crop evapotranspiration.

3 Irrigation water requirements: Methodology of estimating the gross irrigation water requirements and the irrigation scheduling (irrigation dose, time, frequency and efficiency) including water to combat soil salinity.

4 Design discharge of irrigation networks: Design water supply of irrigation networks under the water distribution systems of continuous water supply, rotation and free demand (probability concept).

5 Surface irrigation methods: Basic principles and computational methods for the design and operation of surface irrigation systems (flood irrigation, limited diffusion or furrows). Assessment of topsoil surface irrigation water flow characteristics. Assessment of computational methods of surface irrigation and water reuse from surface irrigation water losses.

6 Sprinkler irrigation systems: Hydraulics, design and operation of sprinkler irrigation systems. Water distribution uniformity and types of sprinkler irrigation systems. Move-set and solid-set irrigation systems. Sprinkler system components (pumps, main and lateral lines, sprinklers) and performance characteristics. Hydraulic computations for the assessment of flow characteristics in pipes of individual and collective sprinkler irrigation networks. Specific sprinkler irrigation systems for environmental protection, and injection of fertilizers, chemical ingredients, and fluid waste.

7 Local and trickle irrigation: Methods of local irrigation: trickle, sub-surface irrigation, fountain and spraying irrigation. Irrigation system components. Uniformity of irrigation water distribution. Irrigation layouts. Hydraulic calculations for the design and good operation of network pipes due to small design discharges. Control systems of hydraulic head for purely irrigation water and water mixed with chemicals and fertilizers. Pumps installations, cleaning filters, equipment of chemicals injection, flow and pressure meters, and automation equipment. Management and evaluation.

8 Pumps for crops irrigation systems: Description of typical parameters and efficiency characteristics for two or more pumps operating in series or in parallel. Pump efficiency consequences from speed and diameter changing of an impeller. Pump efficiency curves and irrigation system required for determining the hydraulic head and operation discharge of one or more pumps. Criteria for selecting the most suitable pump or combination of pumps.
9 Advent and quality of irrigation water-environmental consequence: Description of surface water sources for crop irrigation (rivers, lakes, central irrigation water distribution facilities, industrial and agricultural returns and urban waste), groundwater (subsurface aquifers) and irrigation wells. Suitability conditions and irrigation water quality criteria (e.g. salinity, toxicity,

content of exchangeable sodium, biocides, carbonate anions, suspended materials). Classification systems according to the appropriateness. Supply rate of water resources and soil improvement. Environmental consequences and irrigation water legislation particularly for territorial waters and water appropriation.

10 Flow meters in irrigation systems: Discharge measuring methods and devices in irrigation systems and open channels. Discharges and design of measuring devices in special applications (e.g. ultrasonic meters with or without application of Doppler phenomenon, Pitot pipelines, etc).

11 Drainage and drainage systems: Definition, necessity and factors influencing drainage. Drainage from soil surface and root zone of crops. Surface water drainage with trench networks and root zone drainage with underground closed drainage pipes-drainage networks. Drainage network design (layout, maximum flow, depth, equilibrium, dimensioning and technical works). Economic, legislative and environmental issues.

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face	Face-to-face			
ANDCOMMUNICATIONS	 Web search (literature review and data sources) Utilization of E-class UNIWA platform (file exchange among professors and students) Email Specialized software and libraries Office software (word, presentations, spreadsheets editors) 				
TEACHING METHODS	Activity	Semester workload			
The manner and methods of teaching are described in detail. The student's study hours for each learning	Lectures Study and analysis of bibliography	39 39			
activity are given as well as the hours of non- directed study according to the principles of the ECTS	Laboratory practice Group (lab) projects Laboratory exercises (personal assignments)	26 30 16			
	Course total	150			
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure	Language of evaluation: Greek				
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	 Methods of evaluation: Written exam at the end of the semester (multiple choice questionnaires, short-answer questions, & problem-solving questions) Homework (practical exercises on both theoretical and practical objectives related to the course and project) 				

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

Finkel, H.J. (2009). Handbook of Irrigation Technology. Taylor & Francis Inc. pp 384. *ISBN:* 0849332311.

James, G.L. (1988). Principles of Farm Irrigation System Design. Published by John Wiley & Sons, Inc., Canada.

Jensen, M. E. (1983). Design and Operation of Farm Irrigation Systems, Hand book, 2nd Edition (revised). Published by The American Society of Agricultural Engineers, Michigan USA. Lascano R.J. and Sojka R.E. (Eds) (2007). Irrigation of Agricultural Crops. American Society of

Agronomy. pp 664. ISBN: 0891181628.

Adrian,Laycock, 2007. Irrigation Systems, Design, Planning and Construction. CABI Publishing. 285 pages. ISBN: 1845932633.

Panagoulia D. and Dimou G. (2000). Introduction in Land Reclamation Works, 3rd Edition, 444 pages. National Technical University. Athens. In Greek.

Terzidis G. (1997). Agricultural Hydraulics. Ed: Ziti. 501 pages. ISBN: 9604314041. In Greek. Tsakiris G. (2006). Hydraulic Works, Design and Management Volume II: Land Reclamation Works. Eds: Simmetria. 776 pages. ISBN: 9602661712.

Valeria De Laurentiis, Dexter V.L. Hunt and Christopher D.F. Rogers (2016). Overcoming Food Security Challenges within an Energy/Water/Food Nexus (EWFN) Approach. Review-Sustainability 8(1), 95; doi:10.3390/su8010095.

- Related academic journals:

Agricultural Water Management, Elsevier

Journal of the American Water Resources Association (JAWRA)

GEO7200 – TRASPORTATION INFRASTRUCTURE CONSTRUCTURAL ASPECTS

COURSE OUTLINE: GEO7200 -TRASPORTATION INFRASTRUCTURE CONSTRUCTURAL ASPECTS

(1) **GENERAL**

SCHOOL SCHOOL OF ENGINEERING				
ACADEMIC UNIT	ADEMIC UNIT DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN	IG		
LEVEL OF STUDIES	Undergradua	ate		
COURSE CODE	GEO7200	S	EMESTER	7 th
COURSE TITLE	TRASPORTA ASPECTS	TION INFRASTF		NSTRUCTURAL
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			WEEKLY TEACHIN GHOURS	CREDITS
		Lectures	2	
	Labo	ratory Exercise	2	
		TOTAL	4	4
COURSE TYPE	Special Back	ground		
PREREQUISITE COURSES:	No			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)			
COURSE WEBSITE (URL)	https://eclas	https://eclass.uniwa.gr/courses/GEO254/		

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

After the successful completion of the course, the students shall be able to:

Have knowledge of road and airport pavement engineering principles

Follow and apply design and analysis methods for all pavement types

Utilize the capabilities of airport pavement design and analysis

Properly evaluate road and airport pavement structures

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

The successful completion of the course will contribute the students to acquire the following general competences:

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Decision-making
- Working independently
- Production of free, creative and inductive thinking

(3) SYLLABUS

(Theoretical Part)

- 1. History of pavement engineering. Transportation infrastructure components
- 2. Pavement types. unbound aggregate materials. bituminous materials
- 3. Subbase, base, asphalt mix layers
- 4. Traffic and axle loads, pavement response.
- 5. Mechanical properties of road and airport pavement materials
- 6. Flexible pavement design methods
- 7. Rigid pavement design and construction
- 8. Pavement deterioration and maintenance
- 9. General aspects of airport pavement engineering.
- 10. Airport pavement design. Structural Classification
- 11. Visual inspection of pavements
- 12. Technological applications

Lab Part of the Course

1. Exercises and applications on the major aspects of road and airport pavement enginneering

DELIVERY.	Face-to-Face			
	Interactive learning			
USE OF INFORMATION	Web search (literature rev	iew and data sources)		
ANDCOMMUNICATIONS	Utilization of E-class UNIW	A platform (file exchange		
TECHNOLOGY	among professors and stud	dents)		
Use of ICT in teaching, laboratory education,	 Specialized software and c 	lata sources (both freeware		
communication with students	commercial and open sour	rce)		
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	4*13=52		
described in detail.	Laboratory Exercises	60		
The student's study hours for each learning	Study and Exam Preparation	38		
activity are given as well as the hours of non- directed study according to the principles of the ECTS	Course total	150		
STUDENT PERFORMANCE	Methods of evaluation:	L. L		
EVALUATION	 Written exam at the end of 	the semester (multiple		
Description of the evaluation procedure	choice questionnaires, short-	• •		
	problem-solving questions) (2	•		
Specifically-defined evaluation criteria are	• Homework oral exam (prac	-		
given, and if and where they are accessible to students.	theoretical and practical obje			
statents.	(30% of total)	,		

(5) ATTACHED BIBLIOGRAPHY

- 1. Α. Καλτσούνης, "ΟΔΟΠΟΙΙΑ ΙV Κατασκευαστικά Στοιχεία Έργων Οδοποιίας", Σημειώσεις
- 2. Α. Λοΐζος, Χ. Πλατή, «Σημειώσεις για το μάθημα Οδοστρώματα Οδών και Αεροδρομίων», Τεύχος Α, Αθήνα, Οκτώβριος 2015.
- Α. Λοΐζος, Χ. Πλατή, «Σημειώσεις για το μάθημα Οδοστρώματα Οδών και Αεροδρομίων», Τεύχος Β, Αθήνα, Οκτώβριος 2015.
- E. J. Yoder , M. W. Witczak, «Αρχές Σχεδιασμού Οδοστρωμάτων» Εκδόσεις Μ. Γκιούρδας, 2000
- 5. AASHTO, «Guide for Design of pavement structures», 1993.
- 6. Federal Aviation Administration, «Airport Pavement Design and Evaluation», Advisory Circular 150/5320-6D, Washington DC, 1995.
- 7. Federal Aviation administration, «Airport Pavement Design and Evaluation», Advisory Circular 150/5320-6E, Washington DC, 2009.
- 8. Federal Aviation administration, «Standardized Method of Reporting Airport Pavement Strength PCN», Advisory Circular 150/5335-5, 1983.
- 9. FHWA, «Distress Identification Manual for the Long-Term Pavement Performance Program», June 2003.
- 10. Huang, Y.H. «Pavement Analysis and Design», Practice Hall, Inc., 2004.
- 11. o International Civil Aviation Organization, «Aerodrome Design Manual (Part 3 _ Pavements) second edition», I.C.A.O. publications, 1983.

GEO7210 – SUSTAINABLE URBAN DEVELOPMENT

COURSE OUTLINE: GEO7210 - SUSTAINABLE URBAN DEVELOPMENT

(1) GENERAL

SCHOOL	SCHOOL OF	SCHOOL OF ENGINEERING			
ACADEMIC UNIT		DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN				
LEVEL OF STUDIES	UNDERGRAD	UATE			
COURSE CODE	GEO7210		SEMESTER 7 TH		
COURSE TITLE	SUSTAINABL	E URBAN DEV	ELOPMENT		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	ponents of the course, e.g. lectures, are awarded for the whole of the CREDITS				
	LECTURES 3				
	LABORATORY EXCERSISES 1				
		TOTAL	4	5	
COURSE TYPE	SPECIAL BAC	KGROUND			
PREREQUISITE COURSES:	URBAN PLANNING				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK (WITH THE POSSIBILITY FOR OTHER LANGUAGES TOO)				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES				
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

After the completion of the course students:

- will have comprehended the technical, economic, social and environmental issues that affect urban development and will be able to shape arguments so as to describe forms of urban development

- will have understood the function and structure of urban agglomerations, being able to make successful projections for further development

- will have understood the challenges and opportunities related to metropolitan areas

- will familiarize with urban planning legislation, being able to recognize different scales and level of planning

- will have learned international best practices that might find analogies with Greek metropolitan areas

- will have learned effective ways to collect and combine social and spatial data, using GIS
- will have learned how to collaborate in an interdisciplinary environment

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

After completion of the course students:

- will be able to conduct research and proceed in data analysis using the appropriate technological tools
- will be able to work independently and in groups
- will learn how to work in interdisciplinary environments
- will learn how to value multicultural environments
- will familiarize with sustainable practices and eco-friendly strategies
- will be able to elaborate critical thinking

(3) SYLLABUS

1. Basic knowledge about urban areas taking into account technical, economic, social and environmental dimensions.

2. Historic patterns of urban development and contemporary approaches (compact city, urban sprawl, smart city, metropolitan district etc)

3. Urban scenery, quality of life and urban infrastructures. Various land uses, urban networks, sustainable mobility and contemporary challenges.

4. Environmental assessment of the built environment with emphasis on the reduction of energy consumption.

5. The role of climate change on urban development. Protection against natural disasters. International goals.

6. Basic principles of urban design. Standards, urban indicators etc

7. Evolution of pertinent legislation in Greece. Types of studies and special categories.

8. The role of survey and geoinformatics engineers on the implementation of sustainable urban development.

Laboratory exercises include:

- assignments involving literature review

- urban planning of small-scale urban areas

- assignments suitable for using contemporary GIS software so as to combine spatial and social data

DELIVERY	Lectures, interactive educational tools			
·	Attendance of relevant conferences and workshops			
	Students participation in the	e content of the lesson		
USE OF INFORMATION	Use of digital visual element	s and relevant tools		
ANDCOMMUNICATIONS	Use of satellite data for urba	in areas		
TECHNOLOGY	Use of CAD software and GIS	S software		
Use of ICT in teaching, laboratory education, communication with students	Use of an asynchronous educational platform (eclass)			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are	Lectures	39		
described in detail.	Laboratory exercises	13		
The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the	Completion of laboratory exercise and presentation	48		
ECTS	Independent study	50		
	Course total	150		
STUDENT PERFORMANCE	Written final exam (min 50%	%)		
EVALUATION Description of the evaluation procedure	Project (during the whole semester) max 50%			
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.				

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

Aouad, D. (2016). Urban Acupuncture as a tool for today's re-naturalization of the city: The nonconstructible parcels of Municipal Beirut through the case study of Saifi district.. 10.1201/9781315226255-96.

https://www.researchgate.net/publication/304774624 Urban Acupuncture as a tool for t oday's re_

naturalization of the city The nonconstructible parcels of Municipal Beirut through the case study of Saifi district

Casagrande,M.(2014).Paracity:UrbanAcupuncture.https://www.researchgate.net/publication/279058320_Paracity_Urban_Acupuncture/citation/downloa d

Casagrande, M. (2006). Urban Acupuncture - Treasure Hill. Taiwan Architect.https://www.researchgate.net/publication/216563643_Urban_Acupuncture_-

_Treasure_Hill Casagrande, M. (2016). From Urban Acupuncture to the Third Generation City. Journal of Biourbanism.

4. 29- 42. https://www.researchgate.net/publication/309741134_From_Urban_Acupuncture_to_the_Th_ird_Gen_eration_City

Chatzidimitriou, A., Yannas, S. (2016). Microclimate design for open spaces: Ranking urban design effects on pedestrian thermal comfort in summer. Sustainable Cities and Society. 26. 10.1016/j.scs.2016.05.004., available at https://www.researchgate.net/publication/303293431 Microclimate design for open space s Ranking urban design effects on pedestrian thermal comfort in summer Chatzidimitriou, A., Yannas, S. (2015). Microclimate development in open urban spaces: The of form 108. 156-174. influence and materials. Energy and Buildings. 10.1016/j.enbuild.2015.08.048., available athttps://www.researchgate.net/publication/282335797_Microclimate_development_in_ope n_urban_ spaces_The_influence_of_form_and_materials Chatzidimitriou, Angeliki & Yannas, Simos. (2004). Microclimatic Studies of Urban Open Spaces in Northern Greece. Proc. PLEA 2004. available 1., athttps://www.researchgate.net/publication/254340558 Microclimatic Studies of Urban O pen_Spa ces_in_Northern_Greece Farr D. (2008), Sustainable Urbanism: Urban Design with Nature, John Wiley & Sons Flannery J., Karen M. Smith (2008) Urban Landscape Design, teNeues Huang, L. & Wu, J. & Yan, L. (2015). Defining and measuring urban sustainability: a review of indicators. Landscape Ecology. 30. 10.1007/s10980-015-0208-2. https://www.researchgate.net/publication/276621753 Defining and measuring urban susta inability a review of indicators Ibanez O'Donnell, S. (2019). Feminist Urbanisms in Barcelona. Rethinking public space and the right to the city through a gender lens., https://www.researchgate.net/publication/339003976 Feminist Urbanisms in Barcelona Re thinking public space and the right to the city through a gender lens Jenks M. & Dempsey N. (2005), 'Future Forms and Design for Sustainable Cities', Elsevier Day, К. (2011). Feminist design., approaches to urban https://www.researchgate.net/publication/270761831 Feminist approaches to urban desig <u>n</u> Lerner J. (2016) Urban Acupuncture, Island Press Massey, D. (2005). For space. London, UK: Sage Publications. Rapoport A. . (1990) History and precedent in environmental design, Plenum Press, New York

Riddell R. (2004) 'Sustainable Urban Planning', Blackwell. Romero-L., P., Gnatz, D., Wilhelmi, O., Hayden, M. (2016). Urban Sustainability and Resilience: From Theory to Practice. Sustainability. 8. 1224. 10.3390/su8121224., https://www.researchgate.net/publication/310840664 Urban Sustainability and Resilience From The ory to Practice Short J. R. (1996), 'The Urban Order', Blackwell Soemardiono, B. (2013). URBAN SUSTAINABILITY PERFORMANCE AS THE FRAMEWORK IN EVALUATING **SUSTAINABLE** CITY. https://www.researchgate.net/publication/259295597 URBAN SUSTAINABILITY PERFORMAN CE AS THE FRAMEWORK IN EVALUATING SUSTAINABLE CITY Soja, E. W. (2010). Seeking spatial justice. Minneapolis: University of Minnesota Press. Tousi E., Serraos K. (2020) Brownfield Management in Greece. The case of Piraeus, Journal of Sustainable Architecture and Civil Engineering, Kaunas University of Technology Vale, L. (2014). The politics of resilient cities: Whose resilience and whose city?. Building Research and Information. 42. 10.1080/09613218.2014.850602., https://www.researchgate.net/publication/263145267 The politics of resilient cities Whos e resilie nce and whose city Verma, P. & Raghubanshi, A. (2018). Urban sustainability indicators: Challenges and opportunities. Ecological 93. 10.1016/j.ecolind.2018.05.007. Indicators. 282-291. https://www.researchgate.net/publication/325153874_Urban_sustainability_indicators_Chall enges and opportunities Vojnovic, I. (2014). Urban sustainability: Research, politics, policy and practice. Cities. 41. 10.1016/j.cities.2014.06.002., https://www.researchgate.net/publication/275529149 Urban sustainability Research politic s policy and practice In Greek: Ανδρικοπούλου, Ε., Α. Γιαννακού, et al., (2014) 'Πόλη και πολεοδομικές πρακτικές', Κριτική, Αθήνα Αραβαντινός Α., '(2008) Πολεοδομικός Σχεδιασμός', Συμμετρία, Αθήνα ΚΑΠΕ (2004) « Σχεδιασμός Υπαιθρίων Αστικών Χώρων με βιοκλιματικά κριτήρια», Πρόγραμμα RUROS, 5th framework Program 1998-2002, ηλεκτρονική δημοσίευση στο http://www.cres.gr/kape/education/design_guidelines_el.pdf

Καρύδης Δ. (1993) 'Ανάγνωση Πολεοδομίας, Η Κοινωνική Σημασία των Χωρικών Μορφών', Συμμετρία, Αθήνα.

Μπουρζέλ Γ. ,(1989) 'Η Νεοελληνική Πόλη', Εξάντας, 1989.

Μητούλα Ρ., Αστάρα Ό. Β., Καλδής Π., (2008) 'Βιώσιμη Ανάπτυξη', Rosili

Μωραϊτης Κ. (2015) «Το τοπίο, πολιτιστικός προσδιορισμός του τόπου. Σημειώσεις για τη νεότερη, τοπιακή επεξεργασία του τόπου», Εκδόσεις Σιδέρη, Αθήνα

Ντουνιαδάκή Κ. (2006), Πολεοδομικός Σχεδιασμός και Αστικό Πράσινο, Εισήγηση σε ημερίδα με θέμα «Το πράσινο αφορά όλους», ΤΕΕ/ ΤΔΚ και ΤΕΔΚ, Χανιά

Πολύζος, Σ. (2015) 'Αστική Ανάπτυξη', Κριτική, Αθήνα

Σαρηγιάννης Γ.Μ. (2000) Αθήνα 1830-2000, Συμμτερία, Αθήνα.

Σερράος Κ., Θεολόγου Κ. (1997) Ιωάννης Δεσποτόπουλος: Η ιδεολογική δομή των Πόλεων, Πανεπιστημιακές Εκδόσεις ΕΜΠ, Αθήνα

Σιδηρόπουλος Γ., Στεργιόυ Μ., Αστική ανανέωση και εξευγενισμός- οι ελληνικές ιδιαιτερότητες, ERSAGR Συνέδριο: Περιφερειακή Ανάπτυξη και Οικονομική Κρίση, Διεθνής εμπειρία και Ελλάδα» Μαΐος 2011, ΙΠΑ, Πάντειο Παν/μιο, Αθήνα

Φιλιππίδης Δ. (2015) Κωνσταντίνος Α.Δοξιάδης: Αναφορά στον Ιππόδαμο, Μέλισσα, Αθήνα

Χαλ Τ. (2005) 'Αστική Γεωγραφία', Κριτική, Αθήνα

Χίρσον Ρ. (2004) Κληρονόμοι της Μικρασιατικής Καταστροφής, Μορφωτικό ίδρυμα Εθνικής Τραπέζης, Αθήνα

8th Semester

GEO8010 – TRANSPORTATION ANALYSIS AND PLANNING

COURSE OUTLINE: GEO8010 – TRANSPORTATION ANALYSIS AND PLANNING

(1) GENERAL

SCHOOL	SCHOOL OF	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS				
	ENGINEERIN	IG			
LEVEL OF STUDIES	Undergradu	ate			
COURSE CODE	GEO8010		SEMESTER	8 th	
COURSE TITLE	Transportat	ion Analysis ar	nd Planning		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	are awarded for the whole of the CREDIT			CREDITS	
Lectures & Individual Exercise (The	oretical part	of the Course)	2		
Group Exerc	ise (Lab Part	of the Course)	2		
	Total 4			5	
COURSE TYPE	General bac	kground			
PREREQUISITE COURSES:	No				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	oreen				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)				
COURSE WEBSITE (URL)	New course				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

After the successful completions of the course, students will be able to:

- Know the basic concepts and principles of Transportation
- Understand the Transport Planning Process
- Apply the different stages of the 4-step model (trip generation, trip distribution, modal split, route assignment)
- Evaluate the transport demand / supply analysis
- Develop Logit polynomial / binary models

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

After the successful completions of the course, students acquire the following knowledge and skills:

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Team Work
- Work in an interdisciplinary environment
- Production of free, creative and inductive thinking

(3) SYLLABUS

Theoretical part of the Course

- 1. Basic concepts and principles of Transportation
- 2. Transport Planning Process
- 3. Basic principles of systems standardization
- 4. Transport systems standardization approach The 4-step model
- 5. Trip Generation
 - Growth rate models
 - Category Analysis Models
 - Regression Analysis Models
 - Dispersion diagrams
 - Procedure for predicting future trips
- 6. Trip Distribution
- 7. Modal Split
- 8. Route assignment
- 9. Transport Demand / Supply Analysis
 - Features of Demand for movement
 - Analysis of transport demand curve
 - Interaction of supply and demand
 - Elasticity analysis
 - Utility function
- Indifference curves
- 10.Discrete Options Analysis
- 11.Statistics concepts
 - Data collection methods
- Zoning system
- 12.Logit polynomial model, Binary Logit Model

Lab Part of the Course

Preparation of a group exercise (groups of 4) to investigate the trips from / to UNIWA Campus

DELIVERY	Face-to-Face			
	 Lectures - interactive teaching in the classroom 			
	 Encouraging students to attend related Workshops, 			
	Conferences, etc.			
USE OF INFORMATION	Presentations in the black	poard		
ANDCOMMUNICATIONS	 Presentations through Power Point slides 			
TECHNOLOGY				
Use of ICT in teaching, laboratory education,				
communication with students TEACHING METHODS				
The manner and methods of teaching are	Lectures	52 (13 X 4)		
described in detail. The student's study hours for each learning	Students create groups of 4	60		
activity are given as well as the hours of non-		80		
directed study according to the principles of the	students and prepare a			
ECTS	group theme to investigate			
	movement to / from and within the campus			
	Study and preparation for 38			
	the exams			
	Course total	150		
STUDENT PERFORMANCE	Language of evaluation: Gre	ek		
EVALUATION				
Description of the evaluation procedure	Theoretical part of the Course			
	• Written exam (70%)			
Specifically-defined evaluation criteria are				
given, and if and where they are accessible to students.				
students.				

(5) ATTACHED BIBLIOGRAPHY

- 1. I. Frantzeskakis, J. Giannopoulos, "Design of Transportation Systems and Traffic Engineering", Vol. 1, Paratiritis, 1986
- 2. Κ. Αμπακούμκιν, "Design of Transportation Systems", NTUA, 1986
- 3. P. Stopher, A. Mayburg, "Urban Transportation and Planning", Lexington, 1975
- 4. G. Aberle, "Transportwirtschaft", Oldenbourg, 1997

GEO8020 – GEOSPATIAL DATA MANAGEMENT IN WEB ENVIRONMENT

COURSE OUTLINE: GEO8020 – GEOSPATIAL DATA MANAGEMENT IN WEB ENVIRONMENT

(1) GENERAL

SCHOOL	SCHOOL OF	SCHOOL OF ENGINEERING		
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERING			
LEVEL OF STUDIES	Undergraduate - Level 6			
COURSE CODE	GEO8020 SEMESTER 8 th			
COURSE TITLE	GEOSPATIAL DATA MANAGEMENT IN WEB ENVIRONMENT			
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	nponents of the course, e.g. lectures, s are awarded for the whole of the		WEEKLY TEACHIN GHOURS	CREDITS
		Lectures	3	
	1 Lab exercises			
		Total	4	5
COURSE TYPE	General bac	kground		
PREREQUISITE COURSES:	Geographic Information Systems & Science			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (Eng	glish)		
COURSE WEBSITE (URL)	https://eclas c=75	s.uniwa.gr/moc	lules/auth/opend	courses.php?f

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The course aims to present both methods and techniques followed in an international level for the organization, visualization, management and processing of geospatial data in web, utilizing modern tools of geographic information systems including specialized software and libraries for geographic information management in web browsers.

Course objectives involve the combination of knowledge in different fields including cartography, geographic information systems and basic programming methods while, at the same time, require the understanding of basic elements related to the construction of information systems in the web. For this reason, the course includes both theoretical lectures and practical exercises aiming at the smooth shifting from theoretical concepts to the practical implementation of online maps and geospatial data infrastructures.

Considering the fact that the modern approach of distributing cartographic products is based on the utilization of the world wide web, the knowledge acquired by the students in the course includes all the necessary supplies required in the industry.

Based on the sections designed for the support of the course, the theoretical and the practical elements, which are comprehended in the framework of the course, are related to:

- a. modern concepts and approaches applied in web mapping,
- b. geospatial web services,
- c. web map production and distribution,
- d. the development and management of geospatial data infrastructures,
- e. the development of specialized cartographic applications in web environment.

After the successful completions of the course, students acquire a set of knowledge and skills that allow them:

a. To organize the geographical information in appropriate structures towards its distribution in web environment, fully supporting the generation of integrated web geographic information systems and geospatial data infrastructures.

b. To successfully manage and modify existing web geographic information systems and geospatial data infrastructures.

c. To develop specialized web applications for professional, educational and research purposes.

Moreover, both the theoretical approaches and the practical tools taught in the course help students towards the elaboration of diploma theses in the field of Geoinformatics.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Decision-making
- Working independently
- Team work
- Criticism and self-criticism
- Production of free, creative and inductive thinking

(3) SYLLABUS

Theoretical part of the Course

- 1. Introduction to web mapping:
- Historical evolution of cartographic products nature: from analog to digital and web maps.
- Web maps types.
- Interactivity and navigation on digital and web maps.
- Data structures and file formats used for the digital representation and management of geospatial data in web environment.
- Basic web maps applications.
- 2. Geospatial web services:
 - Basic principles of web services.
 - Architecture of web mapping systems.
 - Standards and protocols for the management of geographic information and the support of geospatial services in the web.
 - Geographic information servers.
- 3. Web maps production and distribution:
 - Cartographic visualization principles for the representation of geographical information: variables and methods for geospatial data visualization.
 - Graphic design principles of web map layout.
 - Opportunities and limitations in geographical information visualization in the web.
- 4. Geospatial data infrastructures:
 - Architectures of geospatial data infrastructure systems.
 - Development of geospatial infrastructure to support experts, non-experts, and stakeholders.
 - Interoperability of geospatial data infrastructures and international standards for systems development.
 - Legislative framework.
 - National and international geospatial data infrastructures.
- 5. Web mapping applications development:
 - Basic technologies and programming languages for the development of cartographic applications in web environment.
 - Software libraries for the management and processing of geospatial data in web environment.
 - Best practices and examples of web mapping applications.

Lab Part of the Course

- Geospatial data organization and homogenization for their distribution using web maps and geospatial data infrastructures
- Cartographic visualization of geographical information in web environment
- Geographical information retrieval and update using geospatial data infrastructures
- Source code parametrization for web mapping

DELIVERY	Face-to-Face			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Web search (literature review and data sources) Utilization of E-class UNIWA platform (file exchange among professors and students) Email Specialized software and libraries (both commercial and open source) for the management and visualization geospatial data in desktop and web environment Source code editors Office software (word, presentations, spreadsheets editors) 			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	40		
The student's study hours for each learning	Study and analysis of	35		
activity are given as well as the hours of non- directed study according to the principles of the	bibliography			
ECTS	Laboratory practice	55		
	Lab exercises	10		
	Educational visits	10		
	Course total	150		
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students.				

(5) ATTACHED BIBLIOGRAPHY

- Tsoulos, L., Skopeliti, A., & Stamou, L. (2015). Cartographic composition and production in digital environment (In Greek). [ebook] Athens:Hellenic Academic Libraries Link. Available Online at: http://hdl.handle.net/11419/2506.
- 2. Clarke, K. C. (2014). Maps & Web Mapping. Pearson.
- 3. Kraak, J. M., & Brown, A. (2003). Web cartography. CRC Press.
- 4. Mitchell, T. (2005). Web mapping illustrated: using open source GIS toolkits. O'Reilly Media, Inc.
- 5. Muehlenhaus, I. (2013). Web cartography: map design for interactive and mobile devices. CRC Press.
- 6. Peterson, M. P. (1995). Interactive and animated cartography. Prentice Hall.
- 7. Stefanakis, E. (2015). Web Mapping and Geospatial Web Services, Fredericton.

8. Williamson, I. P., Rajabifard, A., & Feeney, M. E. F. (2004). Developing spatial data infrastructures: from concept to reality. CRC Press.

GEO8030 – SIGNAL ANALYSIS & PROCESSING

COURSE OUTLINE: GEO8030 - SIGNAL ANALYSIS & PROCESSING

(1) GENERAL

SCHOOL ENGINEERING				
ACADEMIC UNIT SURVEYING AND GEOINFORMATICS ENGINEERING				
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	GEO8030 SEMESTER 8 th			3 th
COURSE TITLE	SIGNAL ANA	LYSIS & PROCE	SSING	
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHIN GHOURS	CREDITS	
LECTURES		3	4	
LABORATORY EXERCISES - FIELDWORK		1	1	
TOTAL		4	5	
COURSE TYPE	Specialized general knowledge			
PREREQUISITE COURSES:	No			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:				
IS THE COURSE OFFERED TO ERASMUS STUDENTS				
COURSE WEBSITE (URL)	https://eclas	s.uniwa.gr/cou	rses/GEO206/	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Upon successful completion of the course, students are expected to:

- Demonstrate knowledge of the basic concepts of signal analysis in the fields of time and frequency, the continuous time signal sampling procedure as well as the reverse process, ie their reconstruction from samples
- Distinguish and explain phenomena such as those of frequency folding, non-frequency reconstruction and generally the constraints and problems that arise against digital signal processing
- Demonstrate critical understanding of methods, ideas, results & conclusions which will be found in engineering science articles, books and journals
- Analyze signal processing problems in realistic geodetic application scenarios water resources & geoenvironment and produce solutions based on what has been learned.
- Apply spectral analysis of signals and systems using tools digital systems simulation for output calculation.
- Interpret the results of spectral analysis of digital signals and systems
- Design and develop suitable filters for sampling and processing of signals
- understand the mathematical background and the rules on which non-linear signal analysis
- analyze, model, develop, synthesize and evaluate new methods & non-linear signal analysis techniques

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search, analyze and synthesize data and information, using both necessary technologies
- Project planning & management
- Autonomous work in an interdisciplinary environment
- Promotion of free, creative and inductive thinking
- Decision making
- Time management Working with deadlines

(3) SYLLABUS

- Types and categories of signals (Analog digital, Continuous discrete, Deterministic -stochastic signals)
- Analog-digital and digital-analog conversion
- Statistical characteristics of signal and noise.
- Types & categories of systems (Linear Non-linear systems, Discrete systems time, time invariant systems). Complex & dynamic systems
- Spectral Analysis, Correlation Function & Spectrum.
- Fourier Transform (FT)
- Discrete Transformation (DFT)
- DFT applications (spectral system response, power spectra, energy, convolution in the field of frequencies).
- Short Time Fourier Transform (STFT).
- Filters (Purpose, Types of filters. Stochastic & deterministic filters. Mobile media filters condition, window filters, linear filters, Kalman filters, filter design).
- Non-linear signal analysis (Hurst and Lyapunov Exhibitors, correlation dimension, solution R / S, DFA, Wavelets, etc.).
- Long system memory.
- Data analysis applications in modern geodetic applications (pre-processing, normalizations, transformations, processing, results, evaluation of results)

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc. USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Use of messaaina and social media as additional		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	39	
	Personal study and analysis	30	

fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Laboratory preparation and essay writing Project Course total	13 35 33 150	
EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	 Assessment language: Greek (English for ERASMUS students upon request) Performance evaluation method: Final Written Exam (50% of the final grade) of graded difficulty, which include short-answer questions, open-ended questions and solving simple problems. Evaluation of laboratory work (30% of the final grade from lab work Evaluation of project (20% of the final grade) 		

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography (in Greek):

1. Α. Σκόδρας, Β. Αναστασόπουλος, Ψηφιακή Επεξεργασία σήματος και εικόνας, Εκδόσεις Ελληνικού Ανοικτού Πανεπιστημίου.

2. Γ. Δ. Κόγιας, Εισαγωγή στην Ψηφιακή Επεξεργασία Σήματος, Εκδόσεις Σύγχρονη Εκδοτική, Αθήνα, 2010.

3. Μ. Η. Hayes, Θεωρία και προβλήματα στην ψηφιακή επεξεργασία σήματος, (μτφρ.), Εκδόσεις Τζιόλα, Θεσ/νίκη, 2000, ISBN: 9608050111.

4. Αν. Βελώνη, Ν. Μυριδάκης, Ψηφιακή Επεξεργασία Σήματος, Εκδόσεις Τζιόλα, Θεσσσαλονίκη, 2018.

5. Ν. Καλουπτσίδης, Συστήματα και Αλγόριθμοι, Εκδόσεις Δίαυλος, Αθήνα 1993.

6. J. H. McClellan, R. W. Schafer, M. A. Yoder, Θεμελιώδεις έννοιες της επεξεργασίας σημάτων, (μτφρ.), Εκδόσεις Γκότση, 2006, ISBN: 9608771048.

7. Α. Antoniou, Ψηφιακή επεξεργασία σήματος, Σήματα συστήματα και φίλτρα, (μτφρ.), Εκδόσεις Τζιόλα, Θεσ/νίκη, 2009, ISBN: 9604181882

8. J. G. Proakis, D. G. Manolakis, Ψηφιακή ανάλυση σήματος, Αρχές, αλγόριθμοι, εφαρμογές, (μτφρ.), Εκδόσεις Ίων, Αθήνα, 2010, ISBN: 9604117157

- Suggested bibliography (in English):

1. E. C. Ifeachor, B. W. Jervis, Digital Signal Processing, ISBN: 0201596199.

2. J. G. Proakis, D. G. Manolakis, Digital Signal Processing, ISBN: 0132287315

3. A. Oppenheim, R. Schafer, Digital Signal Processing, ISBN: 0132146355

4. S. K. Mitra, Digital Signal Processing, ISBN: 0071244670

GEO8040 – DIGITAL SYSTEMS & SENSORS

COURSE OUTLINE: GEO08040 - DIGITAL SYSTEMS & SENSORS

(1) GENERAL

SCHOOL ENGINEERING				
ACADEMIC UNIT SURVEYING AND GEOINFORMATICS ENGINEERING				
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	GEO8040 SEMESTER 8th			
COURSE TITLE	DIGITAL SYS	TEMS & SENSO	RS	
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHIN GHOURS	CREDITS	
	LECTURES		3	4
LABORATORY EXERCISES - FIELDWORK		- FIELDWORK	1	1
TOTAL		4	5	
COURSE TYPE	Skills development			
PREREQUISITE COURSES:	No			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK (English for Erasmus Students)			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES (ENGLISI	H)		
COURSE WEBSITE (URL)	https://eclas	s.uniwa.gr/cou	rses/GEO199/	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Upon successful completion of the course, students are expected to:

- Describe and interpret the phenomena that take place in measuring systems.
- select the appropriate signal conditioning circuits for measuring physical and other quantities through sensors
- detect possible interferences in a measurement environment and to suggest techniques to limit them
- evaluate types of sensors by examining their principle of operation, the signal conditioning circuits, their precision characteristics, their dynamic characteristics, their applications as well as their calibration techniques
- Use measurement data collection systems and develop corresponding applications in a graphical programming environment.
- organize the basic structure of applications in wireless and wired metering networks
- Recognize common interface protocols as well as interface software systems at the level of communication and applications
- Develop solutions on popular platforms for rapid development of integrated metering systems in order to be able to implement original metering devices and

data visualization systems.

- Compile systems for measuring, recording, processing and analysis of geoinformatics data (UAV recording platforms, mobile mapping, atmospheric measurements, etc.)
- Evaluates the quality of data received from sensor networks that has developed.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search, analyze and synthesize data and information, using both necessary technologies
- Project planning & management
- Autonomous work in an interdisciplinary environment
- Promotion of free, creative and inductive thinking
- Decision making
- Time management Working with deadlines

(3) SYLLABUS

- Introduction to measurement technology Noise management
- Computer systems communication protocols
- Platforms for rapid prototyping of integrated systems
- Wireless and Wired Networks
- Sensor interface protocols with microcontrollers and computer systems
- Principles of operation and types of basic sensors Characteristics of sensors
- Environmental sensors
- Geosensors
- Optical sensors
- Atmospheric sensors
- Interface standardization of interconnected digital devices software for digital systems connection
- Digital system data transfer protocols in wired or wireless e-communication
- Data visualization platforms

DELIVERY Face-to-face, Distance learning, etc.	Face-to-facePractical training in IC	
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Use of ICT in teaching (Povideos) Use of an asynchronous Use of messaging and so communication channels 	e-learning platform (e-class). ocial media as additional
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are described in detail.	Lectures	39
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography,		30

-		
tutorials, placements, clinical practice, art workshop, interactive teaching, educational	Lab practice	13
visits, project, essay writing, artistic creativity,	Laboratory preparation and	35
etc.	essay writing	
The student's study hours for each learning	Project	33
activity are given as well as the hours of non-	Course total	150
directed study according to the principles of the ECTS		
STUDENT PERFORMANCE	Assessment language: Greek	(English for ERASMUS
	students upon request)	
Description of the evaluation procedure		
	 Final Written Exam (50% difficulty, which include s open-ended questions ar Evaluation of laboratory from lab work Evaluation of project (20) The evaluation criteria has students before the final example. 	of the final grade) of graded hort-answer questions, nd solving simple problems. work (30% of the final grade)

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography (in Greek):

1. Καλοβρέκτης Κ., Κατέβας Ν., 2014. Αισθητήρες Μέτρησης και Ελέγχου. Εκδόσεις Τζιόλα,Θεσσαλονίκη.

2. BentleyJohnP., 2009, Συστήματα Μετρήσεων – Βασικές Αρχές, Εκδόσεις ΙΩΝ, Αθήνα

3. Γαστεράτος, Ι., Μουρούτσος , Κ., Ανδρεάδης, Κ., 2013, Τεχνολογία μετρήσεων –

Αισθητήρια,εκδόσεις Τσότρα, Αθήνα

4. Λουτρίδης, Σ. 2008, Τεχνολογία Μετρήσεων & αισθητήρων, Εκδόσεις Σ. Παρίκου , Αθήνα

- Suggested bibliography (in English):

1. Henry Leung, Subhas Chandra Mukhopadhyay, 2015, Intelligent Environmental Sensing, Springer, New York

2. Park, J., Mackay, S., 2003, Practical data acquisition for instrumentation and control systems, Elsevier, Netherlands

3. Mukhopadhyay, S., Jiang, J.A., 2013, Wireless Sensor Networks and Ecological Monitoring, Springer, Berlin

GEO8050 – REFERENCE AND TIME SYSTEMS

COURSE OUTLINE: GEO8050 - REFERENCE AND TIME SYSTEMS

(1) GENERAL

SCHOOL	ENGINEERIN	IG			
ACADEMIC UNIT	SURVEYING	SURVEYING AND GEOINFORMATICS ENGINEERING			
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	GEO8050 SEMESTER 8 th				
COURSE TITLE	REFERENCE	REFERENCE AND TIME SYSTEMS			
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	nents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHIN GHOURS		CREDITS
		Lectures	3		4
	Labora	atory exersices	1		1
		TOTAL	4		5
COURSE TYPE	Specialized	general			
PREREQUISITE COURSES:	No prerequi	site courses ne	eded		
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes (English)			
COURSE WEBSITE (URL)	https://ecla	ss.uniwa.gr /co	ourses/GEO24	12	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Basic course goals:

- Basic concepts on reference systems and time transformations
- Contemporary applications in surface and satellite geodesy
- Relations between local and global geodetic reference systems
- Algorithms on transformation in space and time

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information,
- with the use of the necessary technology
- Decision-making
- Working independently
- Working in an international environment
- Production of new research ideas
- Production of free, creative and inductive thinking

(3) SYLLABUS

Space and Time in earth sciences. Time and Space measurements. The geometry of Decartes, coordinates and reference systems in Euclidean space. Reference and coordinate system differences. Orthonormal base. Reference frames. Reference frame relations. Curvilinear coordinates. Spherical coordinates. Geodetic and ellipsoidal coordinates. Physical systems of the gravity field. Local astronomical system. Introduction to the height systems. Basic transformation. Plane and 3D transformations. Rotation matrices. Specialized Helmert transformations. Quadratic numbers. Inertial reference systems. ICRS system. Earth – Centered – Earth – Fixed reference systems. ITRS System. Transformation between ICRS and ITRS. Nutation and Presession Theory. Earth pole coordinates. Newtonian and Relativistic Time Theory.

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face	
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	e-class, software developme students through e-class	nt, communication with
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are	Lectures	52
described in detail.	Laboratory practice	58
The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Study and analysis of bibliography	40
	Course total	150

	The final course evaluation is based on written examination (70%) and laboratory work (30%)
summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public	Language of evaluation: Greek (English if needed, e.g., Erasmus+ students) Written examination with short-answer questions, problem solving and laboratory work
students.	

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Torge W., 2001. Geodesy. 3rd Edition. Walter de Gruyter, Berlin.
- Vanicek P., Krakiwsky E., 1992. Geodesy: The Concepts. Elsevier, New York.
- Altamimi Z. and X. Collilieux (eds.), 2013. Reference Frames for Applications in Geosciences. Springer eds.
- Kovalevsky J., I. I. Mueller and B. Kolaczek (eds.), 1989. Reference Frames in Astronomy and Geophysics. Springer eds.

- Related academic journals:

- Journal of Geodesy
- Journal of Geodetic Sciences
- IAG Series publications

GEO8060 – SPECIAL TOPICS IN PHOTOGRAMMETRY & COMPUTER VISION

COURSE OUTLINE: GEO8060 - SPECIAL TOPICS IN PHOTOGRAMMETRY & COMPUTER VISION

(1) **GENERAL**

SCHOOL	ENGINEERIN	IG			
ACADEMIC UNIT	DEPT. OF SU	IRVEYING & GE	ONIFORMAT	ICS ENGINEERING	
LEVEL OF STUDIES	Graduate –	Graduate – Level 7			
COURSE CODE	GEO8060	GEO8060 SEMESTER 8 th			
COURSE TITLE	E Special Topics in Photogrammetry & Computer Vision				
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are awar the weekly teaching hours ar	ents of the course, e.g. lectures, ded for the whole of the course, give		WEEKLY TEACHING HOURS		
	Lec	tures and Labs	4(2/2)	5	
		TOTAL	4	5	
COURSE TYPE	Skills develo	opment			
PREREQUISITE COURSES	No prerequisite courses. Suggested completion of courses Photogrammetry I, II and III, Digital Image Processing, Digital Image Processing, Error Theory & Adjustment of Observations II, Programming Techniques & Algorithms.				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
OFFERED TO ERASMUS STUDENTS	Can be taught in English				
COURSE WEBSITE (URL)	https://eclas =75	s.uniwa.gr/mod	ules/auth/or	pencourses.php?fc	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Basic purpose of this course is to study in more depth, on both the theoretical and the practical level, all components of a photogrammetric/computer vision process which allow the fully automatic 3D object reconstruction from images. At the same time, students will have the opportunity to become familiar with state-of-the-art technologies used in photogrammetry for the collection, processing and analysis of geospatial data. Through lab exercises and projects, the course intends to encourage student initiative towards studying recent international literature as well as writing code regarding current research subject in photogrammetry and computer vision.

Successful completion of this course means that students

• Are familiar with the scientific and technological development in today's photogrammetric practice.

• Have an in-depth insight into methods and algorithms of computer vision as now fused with conventional photogrammetric processes.

• Have a good understanding and can describe, explain and compare algorithms and techniques of sparse/dense image matching of SFM (Structure from Motion).

• Are thus capable of fully comprehending the processes of software for automatic imagebased 3D scene reconstruction and use them in various contexts.

• Are in position to design, implement and apply (in small-scale projects) automated photogrammetric / computer vision procedures (regarding image orientations, camera preand self-calibration, 3D reconstruction); to analyze, interpret and evaluate results (regarding accuracy and reliability); and to present this in technical reports.

• Understands and can compare SLAM (Simultaneous Localization and Mapping) algorithms.

Has adequate knowledge of algorithms for video-based optical navigation (visual

odometry) and their applications in robotics.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Working independently
- Teamwork
- Adapting to new situations
- Criticism and self-criticism
- Search for, analysis and synthesis of data and information, with the use of the necessary technology

(3) SYLLABUS

Elaboration in selected topics of modern photogrammetry and computer vision. Included are lectures by faculty members and invited scientists and researchers from academia and the professional field with expertise in topics of interest.

The subjects refer to state-of-the-art automated processes in photogrammetry and computer vision:

- Algorithms of automatic image orientations
- Linear solutions of image orientations
- Methods for camera calibration and self-calibration
- Techniques for sparse and dense image matching
- Comparison of SFM (Structure from Motion) algorithms
- SLAM (Simultaneous Localization and Mapping) algorithms
- Video-based visual navigation (visual odometry) and its applications in robotics.

The students will also handle exercises and prepare an individual project (open-source software or coding) or an extended critical literature review on topics of the course.

DELIVERY	Face-to-face
Face-to-face, Distance learning, etc.	
USE OF INFORMATION	- Support by the electronic asynchronous course
ANDCOMMUNICATIONS	platform
TECHNOLOGY	eclass (exchange of information and digital data
Use of ICT in teaching, laboratory education, communication with students	between
communication with students	tutors and students)
	- Use of open-source software

	 Use of programming environ projects. Use of photogrammetric so 	
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are described in detail.	Lectures	26
Lectures, seminars, laboratory practice,	Laboratory / Exercises	26
fieldwork, study and analysis of bibliography,	Project	58
tutorials, placements, clinical practice, art workshop, interactive teaching, educational	Non-directed study	40
visits, project, essay writing, artistic creativity,		
etc. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Course total	150
STUDENT PERFORMANCE	Language of evaluation: Gree	ek
EVALUATION Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Methods of Evaluation:Evaluation of performanceOral presentation of proje	

(5) SUGGESTED BIBLIOGRAPHY

- ASPRS, 2013. Manual of Photogrammetry. 6th edition, J. Chris McGlone (editor).
 Luhmann T., Robson S., Kyle S., Harley I., 2006. Close Range Photogrammetry: Principles, Techniques and Applications. Whittles Publishing, Scotland.
- 17. Szeliski R., 2010. *Computer Vision: Algorithms and Applications* (draft). Springer (http://szeliski.org/Book/).
- 18. Hartley R., Zisserman A., 2000. *Multiple View Geometry in Computer Vision*. Cambridge University Press.
- 19. Förstner W., Wrobel B. P., 2016. *Photogrammetric Computer Vision*. Springer.

In Greek:

- 20. Dermanis A., 1991. Analytical Photogrammetry. Ziti Editions, Thessaloniki
- 21. Kraus K., 2003. *Photogrammetry*. Vol 1. TEE Editions, Athens.

GEO8070 – 3D DATA PROCESSING & VISUALIZATION

COURSE OUTLINE: GEO8070 - 3D DATA PROCESSING & VISUALIZATION

(1) GENERAL

SCHOOL	ENGINEERIN	IG		
ACADEMIC UNIT	DEPT. OF SU	DEPT. OF SURVEYING & GEONIFORMATICS ENGINEERING		
LEVEL OF STUDIES	Graduate – Level 7			
COURSE CODE	GEO8070 SEMESTER 8 th			
COURSE TITLE	COURSE TITLE 3D Data Processing & Visualization			
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the cr of the course, give the weekly teachin	omponents of the course, e.g. TEACHING CREDIT			CREDITS
	Lec	tures and Labs	4(2/2)	5
		TOTAL	4	5
COURSE TYPE	Skills develo	opment		
PREREQUISITE COURSES	No prerequisite courses. Suggested completion of courses Photogrammetry III, Error Theory & Adjustment of Observations II, Programming Techniques & Algorithms, Computer Graphics			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
OFFERED TO ERASMUS STUDENTS	Can be taug	ht in English		
COURSE WEBSITE (URL)	https://eclas =75	s.uniwa.gr/moc	lules/auth/opence	ourses.php?fc

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Basic purpose of this course is the familiarization of students with the prevailing methods/techniques for collection of 3D spatial information (automatic photogrammetric processes, laser scanning, optical scanners, RGB-D sensors etc.). Primarily, however, the focus is on subsequent post-processing and manipulation of 3D data and their draping with photo-texture. Ultimate goal is to provide students with skills regarding the generation of representations of 3D space with adequate geometric accuracy and high optical quality.

Successful completion of this course means that students

• Have understood and may describe, analyze and compare the different 3D data structures and their characteristics (pros – cons)

• Will be in position to choose and apply the contextually optimal method for collecting 3D information

• Has an in-depth understanding and may apply methods for the mutual registration of point clouds, and also is in position to implement basic registration algorithms.

• Is capable of processing 3D data (smoothing, hole-filling, decimation, normalization) and choose the optimal processing approach according to the type and accuracy of the data involved.

• Has understood and may describe, analyze and compare methods of triangulation and 3D surface generation.

• Is capable of registering image blocks to 3D models and rendering them with phototexture from the images, by also considering the particular requirements of the representation.

• Is in position to study and evaluate 3D models as regards resolution, accuracy, homogeneity and type of data.

• Can implement an end-to-end process of collection, processing, visualization and analysis of date representing 3D space.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Working independently
- Teamwork
- Production of free, creative and inductive thinking
- Working in an interdisciplinary environment

(3) SYLLABUS

Types of 3D data (point cloud, 3D mesh, surfaces, NURBS, Solids).

Registration of 3D point clouds (ICP registration, 3D feature matching).

3D data processing (smoothing, hole filling, relaxing, segmentation, classification, object recognition). Triangulation of point sets (2D/3D Delaunay triangulation – Voronoi diagram). Algorithms for surface generation from point clouds, 3D mesh parameterization. DTM generation from DSM.

Photogrammetric triangulation sensors (structured light scanners, laser-line scanner, Kinect), laser scanners, optical scanners, combination of photogrammetry and laser scanning.

"True" ortho, Photo-texturing of 3D models and their projections (texture mapping, texture atlas, ortho and true ortho, perspective views).

3D city models with level of detail (LOD), 3D mobile mapping (laser-based and image-based).

3D Printing.

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face	
USE OF INFORMATION	- Support by the electronic asynchronous course	
ANDCOMMUNICATIONS	platform	
TECHNOLOGY	eclass	
Use of ICT in teaching, laboratory education,	- Use of electronic material as teaching aid (ppt slides)	

communication with students	- Use of software for 3D dat	a processing
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are described in detail.	Lectures	26
Lectures, seminars, laboratory practice,	Laboratory / Exercises	26
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art	Project	48
workshop, interactive teaching, educational	Non-directed study	50
visits, project, essay writing, artistic creativity, etc.		
The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Course total	150
STUDENT PERFORMANCE	Language of evaluation: Gre	ek
EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	 Methods of Evaluation: Written examination in the (50%), which combines oper numeric calculations. Evaluation of performan (50%) 	n-ended questions and

(5) SUGGESTED BIBLIOGRAPHY

- 22. Course Notes and Slides (in Greek).
- 23. Botsch M., Kobbelt L., Pauly M., Alliez P., Levy B., 2010. *Polygon Mesh Processing*. CRC Press
- 24. Hormann K., Levy B, and Sheffer A., 2008. *Mesh Parameterization: Theory and Practice*. Course Notes, SIGGRAPH Asia.

GEO8080 – CADASTRAL APPLICATIONS & LAND INFORMATION SYSTEMS

COURSE OUTLINE: GEO8080 - CADASTRAL APPLICATIONS & LAND INFORMATION SYSTEMS

(1) **GENERAL**

SCHOOL	SCHOOL OF	ENGINEERING		
ACADEMIC UNIT	DEPARTMEN	IT OF SURVEYI	NG AND GEOINFO	ORMATICS
	ENGINEERIN	IG		
LEVEL OF STUDIES	Undergradu	ate		
COURSE CODE	GEO8080 SEMESTER 8th			
COURSE TITLE	Cadastral Ap	plications & La	and Information	Systems
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	nents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHIN GHOURS	CREDITS
		Lectures	3	3
		Project	1	2
		Tatal	4	5
		Total	4	5
COURSE TYPE	Special back	ground/ skills d	•	5
COURSE TYPE PREREQUISITE COURSES:	Special back		•	5
	Special backį Greek		•	5
PREREQUISITE COURSES:		ground/ skills d	•	5
PREREQUISITE COURSES: LANGUAGE OF INSTRUCTION and EXAMINATIONS: IS THE COURSE OFFERED TO	Greek Offered (Eng	ground/ skills d glish)	•	
PREREQUISITE COURSES: LANGUAGE OF INSTRUCTION and EXAMINATIONS: IS THE COURSE OFFERED TO ERASMUS STUDENTS	Greek Offered (Eng	ground/ skills d glish)	evelopment	
PREREQUISITE COURSES: LANGUAGE OF INSTRUCTION and EXAMINATIONS: IS THE COURSE OFFERED TO ERASMUS STUDENTS	Greek Offered (Eng https://eclas c=75	ground/ skills d glish)	evelopment dules/auth/open	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The scope of the course is students to have in depth knowledge and to develop skills on creation, development and modification/ exploitation of Hellenic Cadastre spatial and descriptive data/ information. Emphasis is given on cadastral data management according the methods and techniques of Land Information Systems (LIS).

In respect to sustainable development principles, during the course students learn to render spatial data relevant to natural resources and man-made/ anthropogenic interventions in relation to land-parcels, so as the necessary information background in respect to sustainable development principles.

Besides LIS applications on Hellenic Cadastre data, cadastral applications of land redistribution, forest or marine Cadastre, seashore/ beach borderlines determination techniques are also included.

During the course students capability on

After successful course completion, students are expected to:

- Have knowledge on definitions and functions of concurrent cadastral systems, Hellenic Cadastre data correlation to other cadastral applications (marine/ forest cadastres, land redistribution, other administrative acts) on administrative, legal, financial and social level
- Comprehend the methods and the techniques of records and modification of Hellenic Cadastre data base in respect to Hellenic Cadastre technical specifications (spatial/ technical, descriptive/ legal)
- Analyze and encounter problems relevant to ownership status and deeds implementation in the real word either in urban or in periurban and agricultural areas, in respect to the official Hellenic Cadastre records
- Analyze the results of simplified or advanced queries on cadastral, spatial & descriptive, data and their chartographic representation
- Have knowledge on production and application of analytic methods for the management of cadastral data and inquiries and to combine results to other statistical data.
- Evaluate solutions of detailed spatial problems (urban planning scale and geographic reference) and synthesize solutions' results to technical descriptions
- To elaborate with other students in project elaboration and oral presentation

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search, analysis and synthesis of data and information, with the use of the necessary technology
- Adaption to new work conditions
- Decision-making
- Independent work
- Team work
- Self-evaluation
- Free, creative and inductive thinking

(3) SYLLABUS

- Introduction. Hellenic Cadastre and other official cadastral records in Greece.
 International experience. Land Information Systems (L.I.S.) terminology, definitions, scope.
- ii. Hellenic Cadastre technical aspects. Analysis and implementation of Hellenic Cadastre technical specifications on cadastral data bases and cadastral diagrams.
- iii. Immovable thing's spatial identification, geometry and ownership status definition, correlation of deeds geometric description to Hellenic Cadastre spatial data base.
- iv. Integration of Cadastral Survey to LIS. Geometrical geographical aspect of LIS.
 Hellenic Cadastre Chartographical Backgrounds and Orthofotomaps. Transformations (coordinates systems), projections alterations, geometrical corrections.

- v. Cadastral tables. Modification and data processing of descriptive cadastral data integration to Land Information data base, joins/ relations of tables and vector layers.
- vi. Integration of cadastral information to LIS. Exploitation of cadastral data, integration to statistical and spatial systems.
- vii. Analytical methods on management and search of cadastral information/ data (inquiries), multi-level results. In detailed spatial problems (urban planning cadastral scale). Solutions' scenarios. Results chartographic representation.
- viii. Olives/ vineyard cultivation registries, legal framework.
- ix. Land Parcel Identification Systems (L.P.I.S.)
- x. Forests Inventory/ Cadastre. Public properties.
- xi. Seashore, Beach borderlines (legislation, administrative and technical procedures, topographic diagrams). Marine Cadastre.
- xii. Land distribution. Land reparcelling (legislation, administrative and technical procedures, reparcelling procedure).

DELIVERY	Face-to-face		
Face-to-face, Distance learning, etc.			
ANDCOMMUNICATIONS TECHNOLOGY	 Web search (legislation and literature review) E-class UNIWA platform and office Microsoft 365 UNIWA tools (TEAMS, Class Notebook, Shared docs, email) GIS and CAD software Office software (word, presentations, spreadsheets editors) 		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures Theory	30	
The student's study hours for each learning activity are given as well as the hours of non-	Exercises	20	
	Individual projects	35	
directed study according to the principles of the	Team project	20	
ECTS	Home study	20	
	Course total	125	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	 Evaluation Language: Greek (English) Evaluation methods: Written exam (winter or September exams period) Exercises evaluation Individual project evaluation Team project evaluation 		

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- 1. Legislation on Cadastre, forests, seashors and administrative act.
- 2. Technical Specifications, Hellenic Cadastre

(INSPIRE)

http://europa.eu/legislation_summaries/environment/general_provisions/l28195_el.htm The INSPIRE geoportal - http://inspire-geoportal.ec.europa.eu/

Joint Research Centre - JRC - European Commission: https://ec.europa.eu/jrc/en/about E Environmental Systems Research Institute <u>http://www.esri.com/</u>

In Greek:

Ζεντέλης, Π., 2011, Περί κτημάτων λόγος και Κτηματολόγιο, Αθήνα, Εκδ. Παπασωτηρίου Αρβανίτης, Α., 2000, Κτηματολόγιο, Θεσσαλονίκη, Εκδ. Ζήτη.

Ρόκος, Δ., 2005, Περιβάλλον και Ανάπτυξη. Διαλεκτικές Σχέσεις και Διεπιστημονικές Προσεγγίσεις. (Εισαγωγή-Επιμέλεια), Εναλλακτικές Εκδόσεις, Αθήνα.

Ρόκος, Δ., 1981, Φυσικά Διαθέσιμα, Κτηματολόγιο κι Ολοκληρωμένες Αποδόσεις. εκδ. Παρατηρητής Θεσσαλονίκη

Μανιάτης, Ι., 1993, Γεωγραφικά Συστήματα Πληροφοριών Γης – Κτηματολογίου, Θεσσαλονίκη, Εκδ. Ζήτη.

Καρνάβου, Ε. 2002. Γεωγραφικά Συστήματα Πληροφοριών και Υποδομή Χωρικών Δεδομένων για τη σύγχρονη Ελλάδα. Παρατηρητής, Θεσσαλονίκη.

Στεφανάκης Ε., 2003, Βάσεις Γεωγραφικών Δεδομένων και Συστήματα Γεωγραφικών Πληροφοριών, Εκδ. Παπασωτηρίου, Αθήνα

Τεχνικές προδιαγραφές μελετών Κτηματογράφησης για τη δημιουργία Εθνικού

Κτηματολογίου, 2011, Αθήνα, Κτηματολόγιο Α.Ε. – Τεύχος.

- Παράρτημα Α: Κωδικοποίηση και οργάνωση των στοιχείων

- Παράρτημα Β: Παραδοτέα Μελετών

Κύρια Νομολογία:

N.2308/95 ΦΕΚ 114Γ/15.6.1995, Κτηματογράφηση για τη δημιουργία Εθνικού Κτηματολογίου. Διαδικασία έως τις πρώτες εγγραφές στα Κτηματολογικά Βιβλία και άλλες διατάξεις

Ν.2664/98 ΦΕΚ 275Β/3.12.1998, Εθνικό Κτηματολόγιο και άλλες διατάξεις.

Ν.3818/2010 ΦΕΚ 17/16.2.2010, Προστασία Δασών και δασικών εκτάσεων

N.674/77 ΦΕΚ 242Α/1.9.1977, Περί αναδασμού της γης και μεγεθύνσεως των γεωργικών εκμεταλλεύσεων και άλλων τινών διατάξεων.

N.2882/2001, ΦΕΚ 17Α/6.2.2001, Κώδικας αναγκαστικών απαλλοτριώσεων ακινήτων N.2971/2001, ΦΕΚ 285Α/19.12.2001, Αιγιαλός παραλία και άλλες διατάξεις

- Related academic journals:

MDPI Sustainability MDPI Land Elsevier Land Use Policy

GEO8090 – ROAD DESIGN II

COURSE OUTLINE: GEO8090 – ROAD DESIGN II

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING			
ACADEMIC UNIT		DEPARTMENT OF SURVEYING AND GEOINFORMATICS		
	ENGINEERIN			
LEVEL OF STUDIES	Undergradu	ate		
COURSE CODE	GEO8090		SEMESTER	8 th
COURSE TITLE	Road Desigr	n II		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	onents of the course, e.g. lectures, are awarded for the whole of the CREDIT			CREDITS
Lectures & Individual Exercise (The	oretical part	of the Course)	2	
Group Exerci	se (Lab Part o	of the Course)	2	
	Total 4 5			5
COURSE TYPE	Specialization			·
PREREQUISITE COURSES:	-			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/GEO182/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

After the successful completions of the course, students will be able to:

- Understand the interdisciplinary nature of road projects
- Understand the processes of road construction studies in a digital environment
- Apply basic principles and methods related to the design of road projects with emphasis on the assessment of safety
- Evaluate basic elements of selection, design and operation of nodes
- Develop a complete road design issue using a respective program

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

After the successful completions of the course, students acquire the following knowledge and skills:

• Search for analysis and synthesis of data and information, with the use of the necessary

- technology
- Team Work
- Work in an interdisciplinary environment
- Design and project management
- Respect for the natural environment
- Production of free, creative and inductive thinking

(3) SYLLABUS

Theoretical part of the Course

- 1. Surveying Backgrounds Accuracy
- 2. Stages of Road Project Study
- 3. Land Movement Calculation
- 4. Expropriations
- 5. Rainwater runoff
- 6. Visibility
- 7. Typical Configurations
- 8. Geometric Design of Tunnels
- 9. Vehicle Interception Systems
- 10. Levels Roundabouts Selection Operation
- 11. Overpass Selection Operation
- 12. Budget issues

Lab Part of the Course

Preparation of a preliminary design of a road project in a digital environment, which includes: hierarchy of road network, selection of a standard cross-section, preparation of a study in digital background (DTM), horizontal study - longitudinal section - cross sections, rainwater runoff, visibility, safety criteria, choice of culvert positions - preliminary hydraulic dimensioning, indicative design of technical projects, road dimensioning, environmental project visa, restoration of accesses, budget.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-Face			
	 Lectures - interactive teaching in the classroom 			
	• Encouraging students to at	ttend related Workshops,		
	Conferences, etc.			
USE OF INFORMATION	Presentations in the blackl	board		
ANDCOMMUNICATIONS	Presentations through Pov	ver Point slides		
TECHNOLOGY	• 0.Program FM17, Autocad			
Use of ICT in teaching, laboratory education,	, , , , , , , , , , , , , , , , , , , ,			
communication with students	A			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	52 (13 X 4)		
The student's study hours for each learning	Preparation of a	60		
activity are given as well as the hours of non-	preliminary design of a road			
directed study according to the principles of the ECTS	project in a digital			
ECIS	environment Delivered			
	individually			
	Study and preparation for	38		
	the exams			
	Course total	150		
STUDENT PERFORMANCE	Language of evaluation: Gre	ek		
EVALUATION				
Description of the evaluation procedure	Theoretical part of the Course			
	Written exam (50%)			
Specifically-defined evaluation criteria are				
given, and if and where they are accessible to students.	Lab Part of the Course			
students.		esentation of a semester		
	topic (50%)			

(5) ATTACHED BIBLIOGRAPHY

- 1. Apostoleris Anastasios. "Road Geometric Design 1 ", 1st Edition, 2013, Athens.
- American Association of State Highway and Transportation Officials (AASHTO). A Policy on Geometric Design of Highways and Streets, Fifth Edition. Washington, DC., 2011
- 3. Ed.German Road and Transportation Research Association, Committee, Geometric Design Standards. Guidelines for the Design of Roads, (RAA), Germany, 2008.
- 4. Ministry of Environment, Regional Planning and Public Works. Guidelines for the Design of Road Projects, Part 3, Alignment (OMOE-X), Greece, 2001.
- 5. Ministry of Environment, Regional Planning and Public Works. Guidelines for the Design of Road Projects, Alignment (OMOE-AK), Greece, 2005.
- 6. Ministry of Environment, Regional Planning and Public Works. Guidelines for the Design of Road Projects, Alignment (OMOE-IK), Greece, 2005.
- 7. Ministry of Environment, Regional Planning and Public Works. Guidelines for Tunnel Geometric Designs, (OMOE-TU), Greece, 2003.
- 8. Austroads. Guide to Road Design Series. Austroads, Australia, 2009.

GEO8100 – WATER RESOURCES MANAGEMENT

COURSE OUTLINE: GEO8100 - WATER RESOURCES MANAGEMENT

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING			
ACADEIVIIC UNIT		DEPARTMENT OF SURVEYING AND GEOINFORMATICS		
	ENGINEERIN	IG		
LEVEL OF STUDIES	Undergradu	ate		
COURSE CODE	GEO8100		SEMESTER	8 th
COURSE TITLE	WATER RESO	OURCES MANA	GEMENT	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	onents of the course, e.g. lectures, are awarded for the whole of the TEACHIN CREDITS			CREDITS
	Lectures 3			
	Lab exercises 1			
		Total	4	5
COURSE TYPE	Special background			
PREREQUISITE COURSES:	Engineering Hydrology, GEO 506			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)			
COURSE WEBSITE (URL)				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Upon successful completion of the course students will:

 Understand the importance of water resources in economic development on a local regional - national scale and the limitation posed by the lack of water resources on the general prosperity of societies. They will understand the competitive uses of water resources, be able to identify the different projects for the exploitation of water resources and know their basic characteristics as well as understand their functioning as a system. Finally, they will understand the impact of climate change on water resources management.
 Be able to estimate the various economic figures over time so that they have a basis for comparing the development alternatives of water systems.

3. Be able to conceptualize a hydrosystem as a network by applying the principles of subtraction, standardization and simplification.

4. Formulate a water resources problem as an optimization problem and solve it, either by analysis and graphical solution, or by formulating it in Excel and solving it with Solver.
5. Understand statistical-mathematical concepts such as: reliability, uncertainty, risk, simulation and model, sensitivity analysis and model uncertainty, synthetic time series, Monte Carlo sampling.

6. Collaborate with their fellow students for undertaking a project.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information
- Decision-making
- Working independently
- Team work
- Project planning and management
- Respect for the natural environment

(3) SYLLABUS

Theoretical part of the lesson

(1) Key concepts: Water uses, domestic and other - Hydrosystems and their components -Sustainable development - system analysis approach - decision support systems - goals and actions of management- legal framework in Greece. Case studies in Greece and abroad.
(2) Economic figures: Benefit and cost of water systems - useful life of components of water systems - estimation of economic figures over time – cost-benefit analysis - noneconomic benefits of water systems.

(3) Conceptualization and modeling of hydrosystems: network representation - subtraction - standardization - simplification - input data to the model. Case study: the hydro system of Athens.

Estimates of water supply and demand: water resources - characteristic quantities of surface water and groundwater - hydrological uncertainty and reliability - characteristic quantities of water uses (urban - agricultural - livestock - hydroelectric projects).

(5) Alternative methods for model evaluation: model components - project selection and conceptualization. Methods: Optimization versus Simulation. Characteristics and limitations of each method - combination of the two (preliminary screening). Example with a reservoir and three users.

(5) Optimization methods: Introduction - Linear and non-linear optimization models (analysis - Lagrange multipliers - Steepest descent method). **Linear Programming** and Dynamic Programming (simple reference to the latter). Example of linear programming using the Simplex algorithm.

(6) Simulation methods: Uncertainty and risk in water resources exploitation projects. Stochastic simulation (Monte Carlo) and generation of synthetic time series. Sensitivity analysis of models. Uncertainty estimation using simulations.

(7) Climate change and hydrological persistence. Reference to the effects of climate change on water systems in relation to the concept of hydrological persistence.

Lab part of the lesson

The laboratory part consists of 3 laboratories, which aim to help students understand and construct the practical exercises assigned in the lectures.

These are the following:

(1) Optimization problems solved with Microsoft Excel Solver: 3 examples

(2) Lab exercise 1: Analysis and concepts of networks. Shortest path problem using Microsoft Excel Solver.

(3) Lab Exercise 2: Water Resource Management Problem using Microsoft Excel Solver.

DELIVERY Face-to-face, Distance learning, etc.	Face-to-Face				
USE OF INFORMATION	Learning process support three	Learning process support through the electronic platform			
ANDCOMMUNICATIONS					
TECHNOLOGY	Communication with students via e-class and e-mail				
Use of ICT in teaching, laboratory education, communication with students	Extensive use of Microsoft Excel.				
TEACHING METHODS	Activity	Semester workload			
The manner and methods of teaching are	Lectures	29			
described in detail.	Laboratory practice	29			
The student's study hours for each learning	Individual assignments	23			
activity are given as well as the hours of non- directed study according to the principles of the	- Laboratory Teamwork 36				
ECTS	Standalone study	23			
	Course total	150			
STUDENT PERFORMANCE	Theory				
EVALUATION	• Final exam, 50%				
Description of the evaluation procedure	Practical exercises, 20%				
	Laboratory				
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	 Laboratory exercises, 30% 				

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

Greek

- Lecture notes on Water Resources Management Part 1&2, D. Koutsoyiannis, Department of Water Resources, Hydraulic and Maritime Engineering – National Technical University of Athens, 2007, <u>http://www.itia.ntua.gr/el/docinfo/762/</u> (In Greek)
- (2) Data analysis and decision-making techniques, Asimakopoulous D. & Arampatzis G, Publisher Papasotiriou, Athens, 2002 (In Greek)
- (3) Elements of Physical Hydrology, G. Hornberger et al., Translated in Greek by S.H. Karalis, Publisher DISIGMA, 2019.

English

- (4) Water Resources Systems. An introduction to Methods, Models and Applications. Daniel p. Loucks and Eelco van Beek. Studies and Reports in Hydrology. UNESCO Publishing, 2005.
- (5) *Hydrosystems Engineering and Management*. Lary Mays and Yeou Koung Tung. McGraw-Hill Publishing, 1992.
- (6) Principles of Water Resources Planning. Alvin Goodman, Prentice-Hall Inc., 1984.

- Related academic journals:

- (7) Water Resources Research, AGU Publications, John Wiley & Sons, Inc.
- (8) Water Resources Management, Springer
- (9) American Water Works Association
- (10) Journal of Natural Resources Policy Research, Taylor and Francis

GEO8110 – GRAVIMETRY

COURSE OUTLINE: GEO8110 - GRAVIMETRY

(1) GENERAL

SCHOOL	ENGINEERIN	ENGINEERING			
ACADEMIC UNIT	SURVEYING AND GEOINFORMATICS ENGINEERING				
LEVEL OF STUDIES	UNDERGRA	UNDERGRADUATE			
COURSE CODE	GEO8110	GEO8110 SEMESTER 8 th			
COURSE TITLE	GRAVIMETE	RY			
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	onents of the course, e.g. lectures, are awarded for the whole of the WEEKLY CREDITS			CREDITS	
	Lectures 2				4
	Laboratory exersices 1			1	
	TOTAL 3			5	
COURSE TYPE	Specialized general				
PREREQUISITE COURSES:	No prerequisite courses needed				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes (English)				
COURSE WEBSITE (URL)	https://eclass.uniwa.gr /courses/GEO245				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Basic course goals:

- Gravity field estimation methods and relations with the Surveyor science
- Establishment of gravity networks gravity measurements
- Corrections and Reductions of gravity and surveying observations
- Measurements pre-processing and error minimization
- Adjustment algorithms and applications

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information,
- with the use of the necessary technology
- Decision-making
- Working independently
- Team Work
- Working in an international environment
- Production of new research ideas
- Production of free, creative and inductive thinking

(3) SYLLABUS

Gravity acceleration and potential. Absolute and relative gravity measurements – instrumentation. Coriolis effect in gravity measurements and Eotvos correction. Gravity networks – establishment – adjustment. Potential second derivatives measurements. Temporary gravity changes. Geodetic applications of gravity anomalies. Gravity models and geometry. Gravity reductions and isostasy. Gravity networks of high accuracy. Gravity measurements in geophysics / geodynamics. Satellite gravity field monitoring.

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face			
USE OF INFORMATION	e-class, software development, communication with			
ANDCOMMUNICATIONS	students through e-class	students through e-class		
TECHNOLOGY Use of ICT in teaching, laboratory education,				
communication with students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	52		
The student's study hours for each learning activity are given as well as the hours of non-	Laboratory practice	58		
	Study and analysis of	40		
directed study according to the principles of the ECTS	bibliography			
	Course total	150		
STUDENT PERFORMANCE	The final course evaluation is	based on written		
EVALUATION Description of the evaluation procedure	examination (70%) and laboratory work (30%)			
Specifically-defined evaluation criteria are	Language of evaluation: Gree	k (English if needed, e.g.,		
given, and if and where they are accessible to students.				
	Written examination with sho	ort-answer questions,		
	problem solving and laboratory work			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Heiskanen W. A., Moritz H., 1967. Physical Geodesy. Freeman & Co, San Francisco.
- Hofmann-Wellenhof B. and H. Moritz. 2005. Physical Geodesy. Springer eds.
- Moritz H. 1989. Advance Physical Geodesy. Wichmann eds.
- Torge W., 2001. Geodesy. 3rd Edition. Walter de Gruyter, Berlin.
- Torge W. 1989. Gravimetry. Walter de Gruyter, Berlin.
- Vanicek P., Krakiwsky E., 1992. Geodesy: The Concepts. Elsevier, New York.

- Related academic journals:

- Journal of Geodesy
- Journal of Geodetic Sciences
- IAG Series publications

GEO8120 – NAVIGATION

COURSE OUTLINE: GEO8120 - NAVIGATION

(1) GENERAL

SCHOOL	ENGINEERING			
ACADEMIC UNIT	SURVEYING AND GEOINFORMATICS ENGINEERING			
LEVEL OF STUDIES	UNDERGRA	UNDERGRADUATE		
COURSE CODE	GEO8120 SEMESTER 8 th			
COURSE TITLE	NAVIGATIO	N		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	nents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHIN GHOURS	
	LECTURES 3 3			3
	LABORATORY EXCRCISES 1 1			1
	TOTAL 4 4			4
COURSE TYPE	skills development			
PREREQUISITE COURSES:	No prerequis	site courses.		
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES (ENGLISH)			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/TOP129/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The aim of this course is to teach the fundamental principles of navigation. Emphasis is given in surveying applications like hydrography, vehicle guidance, airborne data collection etc. Upon successful completion of the course the students will be able to:

- understand the basic principles of navigation
- choose the appropriate method and equipment for carrying out a navigational task
- process kinematic observations for determining trajectories
- plan and execute basic hydrographic works

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Working independently
- Team work

• Production of new research ideas

(3) SYLLABUS

Theoretical part:

- Historic review of navigation techniques
- Basic principles of navigation (Line of Position, dead reckoning, position fixing, accuracy measures in navigation)
- Celestial navigation
- Nautical chart & compass
- Terrestrial radio navigation: angular, ranging, hyperbolic systems (Loran-C, OMEGA)
- Satellite Navigation (GPS, GLONASS, GALILEO, BEIDOU)
- Satellite based augmentation systems (EGNOS and WAAS).
- Accelerometers (mechanical, MEMS)
- Gyroscopes (mechanical, LRG, FOG, MEMS, gyro compass)
- Inertial navigation systems (gimbalded, strapdown, drift, alignment)
- Applications of Kalman filter in navigation
- Indoor navigation
- Drone navigation
- INS/GPS integration
- Hybrid systems

Laboratory part:

- Field measurements with GPS and GNSS receivers for navigational applications (autonomous positioning, EGNOS, DGPS)
- Processing of kinematic observation for the determination of trajectory and state vector
- Interfacing GNSS receivers and processing unit using NMEA protocol
- Estimation of radio data link range
- Processing of accelerometer data.

DELIVERY	Face-to-face			
USE OF INFORMATION	Use of ICT in teaching (PowerPoint presentations, videos)			
ANDCOMMUNICATIONS	 Use of an asynchronous e-l 	earning platform (e-class).		
TECHNOLOGY	• Use of e-mail			
Use of ICT in teaching, laboratory education, communication with students	 Use of the software in laboratory. 			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	39		
The student's study hours for each learning	study and analysis of	31		
activity are given as well as the hours of non-	bibliography			
directed study according to the principles of the ECTS	laboratory practice	25		
	Laboratory preparation and	30		
	essay writing			

	Course total	150
	Assessment language: Greek (English for ERASMUS students upon request)	
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	 Performance evaluation method: Final Written Exam (85% of the final grade) of graded difficulty, which include short-answer questions, openended questions and solving simple problems. Evaluation of laboratory work (15% of the final grade) which includes exercises. 	
	The evaluation criteria have b students before the final exa their evaluation upon reques on their grades.	mination. Students can see

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography (in Greek):

- 1. Γιαννίου Μ. 2019. Τεχνικές και Συστήματα Πλοήγησης, Διδακτικές Σημειώσεις ΠΑ.Δ.Α.
- 2. Ντούνης Χ., Δημαράκης Α., 2001. Ναυτιλία. Ίδρυμα Ευγενίδου, Αθήνα.

- Suggested bibliography (in English):

- 1. Hofmann-Wellenhof B., Legart K., Wieser M., 2003. Navigation: Principles of Positioning & Guidance, Springer, Berlin.
- 2. Prasad R., Ruggieri M., 2005. Applied Satellite Navigation Using GPS, GALILEO, and Augmentation Systems. Artech House, Norwood, MA.
- 3. Farrell J., 2008. Aided Navigation: GPS with High Rate Sensors. McGraw-Hill, New York.
- 4. Farrell J., Barth M., 1998. The Global Positioning System & Inertial Navigation. McGraw-Hill, N. York.
- 5. Allan A., 2004. Maths for Map Makers. 2nd edition, Whittles Publishing, Scotland.

GEO8130 – GREAT GEODETIC EXERCISES

COURSE OUTLINE: GEO8130 - GREAT GEODETIC EXERCISES

(1) GENERAL

SCHOOL	SCHOOL OF I	ENGINEERING		
	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN			
LEVEL OF STUDIES	Undergradua			
COURSE CODE	GEO8130		SEMESTER 8 th	
COURSE TITLE	GREAT GEOI	DETIC EXERCISE	S	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	are awarded for the whole of the WEEKLY CREDITS			CREDITS
	Lectures 3			
		Lab exercises	1	
		Total	4	5
COURSE TYPE	Specialized §	general knowle	dge	
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek. It can be offered in English if there are foreign students			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)			
COURSE WEBSITE (URL)	https://eclas c=75	ss.uniwa.gr/mo	dules/auth/open	<u>courses.php?f</u>

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

After the end of the course the students:

- will be able to fully undertake a large-scale geodetic, topographic, cadastral project, such us projects commissioned by Public Organizations, Local Government, and in general by Legal Entities of Public and Private Law,
- will be able to take initiatives to deal with problems may arise during the above work,
- will have understood the theoretical background of modern methodologies and techniques of surveying and will be able to design and carry out geodetic - topographic projects,
- will not only be able to understand the operation of modern geodetic instruments and software but, having consolidated the theoretical background, they will be able to evaluate deliverables and address all related problems,
- will have acquired the ability to plan the solution of surveying problems and to adapt the solution to the new requirements of the problem,

- will have understand the possibilities of topography and its relationship with related scientific fields,
- finally, based on the above, they will be able to successfully design, execute and evaluate modern surveying projects, while monitoring and assimilating modern scientific and technological developments.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search, analysis and synthesis of data and information, using the necessary technologies.
- Working independently.
- Team work.
- Criticism and self-criticism exercise.
- Work in an interdisciplinary environment.
- Project design and management.
- Demonstration of social, professional and moral responsibility.
- Adapting to new situations.
- Production of new research ideas
- Promoting of free, creative and inductive thinking

(3) SYLLABUS

Lectures

Design, implementation, measurement and computation of horizontal and vertical control networks. Integration of networks with terrestrial and satellite methods. Design of surveying works for the production of topographic-cadastral diagrams. 3D terrestrial laser scanning mapping. Production of digital backgrounds for the compilation of Land Information Systems (LIS). Technical specifications for compiling topographic diagrams. Quality control of final products.

Laboratory Exercises

The laboratory part of the course is based on the lectures and laboratory exercises of all the previous Geodesy-Topography courses (compulsory and optional) and includes a complete survey-mapping project of a semi-urban-rural area (area of about 50 - 70 acres), the densification of trigonometric network with satellite methods (GNSS), and quality assessment of the existing and new network - for the compilation of topographic - cadastral diagram in real conditions. Applications of securities and administrative acts. Also, the laboratory part includes observations using satellite (RTK) and terrestrial (geodetic stations, 3D laser scanning) techniques. Establishment of vertical networks with combined use of spatial planning, GNSS and geodynamic gravity models. After the end of the course, the students' assignments are delivered to the respective organizations.

The region, where the exercises and fieldworks take part, is defined every year by the Department of Topography-Photogrammetry-Cartography after consultation with OTA, or other Institutes and Organizations that have expressed interest in cooperating with the Department of Surveying Engineering and Geoinformatics.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
USE OF INFORMATION ANDCOMMUNICATIONS	 Lectures: use of multimedia (presentations and videos) Lab exercises: specialized software and libraries for 		
TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 surveying studies Utilization of e-class UNIWA platform (file exchange among professors and students) Web search (literature review and data sources) 		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	52	
	Teamwork	68	
The student's study hours for each learning	Autonomous study	40	
activity are given as well as the hours of non- directed study according to the principles of the ECTS	Course total	150	
STUDENT PERFORMANCE EVALUATION	Language of evaluation: Greek		
Description of the evaluation procedure	Method of evaluation: • Written exams: 30%		
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	 Written exams: 30% Fieldwork-homework: 70% 		

(5) ATTACHED BIBLIOGRAPHY

In Greek:

- 1. Arvanitis A., 1999. Cadastral. Ed. Ziti, Thessaloniki
- 2. Vlachos D., 1987. Topography, Vol. 2, Ed. AUTH
- 3. Georgopoulos G., 2007. Course in Topography, Ed. Tziola.
- 4. Kaltsikis Ch., Foriou A., 1999. General Topography, Ed. Ziti, Thessaloniki.
- 5. Ntinis O., 2008. Road constructions, Ed. Ziti, Thessaloniki.
- 6. Torge W., 2005. Geodesy. Ed. NTUA.
- 7. Tsoulis D., 2004. Introduction to topography. Ed. Ziti, Thessaloniki.
- 8. Tsoulis D., 2012. Satellite Geodesy, Ed. Ziti, Thessaloniki.

In English:

- 9. Allan A.L., Hollwey J.R., Maynes J.H.B., Amin A., 1980. Practical Field Surveying and Computations. Heinmann, Portsmouth, NH.
- 10. Andersen J. M., Mikhail E. M., 1998. Surveying: Theory and Practice. 7th edition, McGraw-Hill, New York.
- 11. Blachut T., Chrzanowski A., Saastamoinen J., 1979. Urban Surveying and Mapping. Springer, Berlin.
- 12. Buckner R. B., 1983. Surveying measurements and their analysis. Landmark Enterprises, Cordova, CA.
- 13. King R. W., Masters E. G., Rizos C., Stolz A., Collins J., 1987. Surveying with Global Positioning System FERD. Dümmler Verlag, Bonn.
- 14. Shepherd F. A., 1977. Engineering Surveying. Edward Arnold, London.
- 15. Uren J., Price W. F., 2005. Surveying for Engineers. 4th edition. MacMillan Press, London.

GEO8140 – INTERGRATED URBAN INTERVENTIONS

COURSE OUTLINE: GEO8140 - INTERGRATED URBAN INTERVENTIONS

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING				
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS				
	ENGINEERING				
LEVEL OF STUDIES	UNDERGRADUATE				
COURSE CODE	GEO8140	SEMESTER 8 TH			
COURSE TITLE	INTERGRATED URBAN INTERVENTIONS				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			WEEKLY TEACHIN GHOURS		CREDITS
		LECTURES	2		
LABORATORY EXCERSISES			2		
TOTAL			4		5
COURSE TYPE	SE TYPE SPECIAL BACKGROUND				
PREREQUISITE COURSES:	URBAN PLANNING				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK (WITH THE POSSIBILITY FOR OTHER LANGUAGES)				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES				
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

After the completion of the course students:

- will have comprehended the technical, economic, social and environmental issues that affect urban development and will be able to shape arguments so as to describe forms of urban development
- will have understood the function and structure of urban agglomerations, being able to make successful projections for further development
- will have understood the challenges and opportunities related to metropolitan areas
- will be able to collect and evaluate data for urban areas
- will be able to implement combined methodologies of architectural, transportation and aesthetic urban interventions
- will be able to apply urban planning methodologies so as to achieve integrated urban interventions.

- will be able to participate in interdisciplinary environments for the implementation of integrated urban interventions

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

After completion of the course students:

- will be able to conduct research and proceed in data analysis using the appropriate technological tools
- will be able to work independently and in groups
- will learn how to work in interdisciplinary environments
- will learn how to value multicultural environments
- will familiarize with sustainable practices and eco-friendly strategies
- will be able to elaborate critical thinking

(3) SYLLABUS

- 1. Contemporary approaches on urban development, focusing on globalization in metropolitan areas.
- 2. Governance of metropolitan areas, different stakeholders and their role within the urban context
- 3. Integrated strategies of sustainable urban development, handling of complex urban issues related to limited urban growth, lack of social and economic cohesion, environmental problems and poor quality of life.
- 4. Development mechanisms for the reconstruction of selected urban enclaves with emphasis to the revival of their social, economic and ecological structures.
- 5. Smart cities as a product of place marketing and city branding. Contemporary approaches.
- 6. Urban regeneration policies and the transformation of the city. International experience and the case of Greece.
- 7. Land uses and the expansion of the city.
- 8. Financial instruments. EU policies for supporting integrated urban interventions.
- 9. Participatory planning.
- 10. Pertinent Greek legislation on integrated urban interventions.
- 11. Collaboration among different administrative levels so as to fulfill the achievement of integrated urban interventions.

Laboratory exercises include:

- Assignments that involve literature review
- Assignments involving degraded urban areas
- Plans for integrated urban interventions
- Use of GIS systems for the implementation of integrated urban interventions.

DELIVERY	Lectures, interactive educational tools			
	Attendance of relevant conferences and workshops			
	Students participation in the content of the lesson			

USE OF INFORMATION	Use of digital visual elements and relevant tools			
ANDCOMMUNICATIONS	Use of satellite data for urban areas			
TECHNOLOGY	Use of CAD software and GIS software			
Use of ICT in teaching, laboratory education, communication with students	Use of an asynchronous educational platform (eclass)			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	lectures	26		
	Project/assignments	26		
	Completion of the project	48		
	and presentation	48		
	Independent study	50		
	Course total	150		
STUDENT PERFORMANCE	Written final exam (min 50%)			
EVALUATION				
Description of the evaluation procedure	Project (during the whole semester) max 50%			
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.				

(5) ATTACHED BIBLIOGRAPHY

• Suggested bibliography:

- Adams D., De Souza C. (2 007) "Brownfield development: A comparison of North American and British Approaches", European Urban Research Association Conference 'The Vital City', University of Glasgow, 12 – 14 September 2007
- Adams D., Watkins C. (2002) "Greenfields, brownfields and housing development", Oxford, England, Blackwell Science.
- Banai, R., DePriest, T., (2014). "Urban Sprawl: Definitions, Data, Methods of Measurement, and Environmental Consequences", Journal of Sustainability Education Vol. 7, December 2014 ISSN: 2151-7452.
- Cheshire P. (2007), «Are m ixed community policies evidence based? A review of the research on neighborhood effects», στο H. Maarten, D. Manley, N. Bailey, L. Simpson και D. Maclenn an, Neighborhood Effects, Research: New Perspectives, Springer, new york 2012, σ. 267-294.
- Chien-hung T. (2007) From Desert Community to Prosper City? Regeneration of Urban Brownfields in Taiwan, ,
- Graduate Institute of Rural Planning, Na tional Chung-Hsing University, Taiwan, Taiwan Association for Schools of Public Administrations and Affairs
- Christiansen P., Loftsgarde n T., (2011). "Drivers behind urban sprawl in Europe" TØI Report 1136/2011, ISBN 97 882-480-1211-5 Electronic version.
- Couch C., Leontidou L., Petschel-Held G., (2007). Urban Spraw I in Europe: Landscapes, Land-Use Cha nge & Policy. Blackwell, Oxford, U.K.
- Deas I., Robson B., Bradford M. (2000) "Re-thinking the urban development corporation experiment: th e case of central Manchester, Leeds and Bristol." Progress in planning, 54, 1-72
- Díaz-Pacheco, J., García-Palomares, J.C. (2014). "Urban Sprawl in the Mediterranean Urban Regions in Europe and the Crisis Effect on the Urban Land Development: Madrid as Study Case" Urban Studies Research, Volume2014, Article ID 807381,

http://dx.doi.org/10.1155/20 14/807381(visited: 5.3.2016).

- EEA, (2006). Urban spraw I in Europe: The ignored challenge, (repo rt). European Environment Agency, Officce for Official Publications of the European Communities, Copenhagen.
- Gullino, S. (2009), "Urban regeneration and democratization of infor mation access: CitiStat experience in Balttimore", Journal of Environmental Management, 90(6), 2012-2019.
- Grigorescu I., Mitrică B., Mocanu I., Ticană, N., (2012). "Urban sprawl and residential development in the Romanian metropolitan a reas" Rev. Roum.Géogr./Rom. Journ. Geogr., 56, (1), p. 43–59, 2012, Bucureşti.
- Harvey, D., (1989). The Condition of Postmodernity, Blackwell, Oxford.
- Jacques R. (2014) "The European Territory: From historical roots to global challenges", Routhledge, New York, USA
- Jenks M., Dempsey N. (2005) 'Future Forms and Design for Sustainable Cities', Elsevier.
- Jenni R. (2006) "Learning from Moscow planning principles of the 1935 General Plan for Reconstruction and its political relevance"
- Kiousopoulos I., Tousi E. (2017) «Urban sprawl: The case of Athens» at Urbanity, Esempi di Architettura, Spazi di Riflessione/39, ed. Maria-Grazia Folli, Politechnico di Milano (SEHUD Project)
- Pérez A.P., Peláez Sánchez S., Van Liedekerke M. (2015) "Remedi ated sites and brownfields Success stories in Europe". A report of the European Information and Observation Network's N ational Reference Centres for Soil (Eionet NRC Soil), European Commission Institute for Environment and Sustainability, L and Resources Management, EU
- Poindexter G. (1995) Addressing morality in urban brownfield redevelo pment: Using steakholder theory to craft legal process, 15 Va. Envtl. L.J. 37 http://heinonline.org/HOL/
- LandingPage?handle=hein.journals/velj15&div=9&id=&pa ge=
- Ponzini D. (2010) "Bilbao effects and narrative defects: A critical rearraisal of an urban rethoric" Working Papers of the Program "Villes et Territoires", Paris, Sciences Po., ηλεκτρονική δημοσίευση στο http://blogs.sciences-p o.fr/recherche-villes/
- Raco M. (2007) "Building Sustainable Communities: Spatial Policy, Place Imaginations and labour m obility in post-war Britain" Policy Press, Bristol.
- Riddell R., (2004) 'Sustainable Urban Planning', Blackwell.
- Sassen S. (2005) "The global city: Introducing a concept", Brown Journal of World Affairs, winter/spring 2005, volume xi, issue 2.
- Slater T. (2004) "North American Gentrification? Revanchist and Emancipatory Perspectives Explored," Environment and Planning A, 36, pp. 1191-213.
- Schett S.(2012) "An analysis of shrinking cities" Urban Ecology WS 20 11/12, Institut für Städtebau und Raumplanung Universität Innsbruck
- Sozen U. (2010) "Gentrification, cosmopolitanism, and consumption in the beyoğlu district: a case study of m etropolitan habitus", Thesis, Koc University, School of Social Sciences and Humanities, ηλεκτρονική δημοσ ίευση στο static1.squarespace.com/.../ Thesis+-+Ulker., ανακτήθηκε 31/08/2015.
- Takala, A. (2006) Evaluating urban regeneration How to measure relev ance of a new urban structure? , University of Tampere, Tampere, Finland.
- Watson V.(2009) "The planned city sweeps the poor away. Urban Planning and 21st

century urbanisation" Progress in Planning 72 (2009) 151–193, Elsevier,

http://www.wiego.org/sites/wiego.org/files/publications/files/Watson_planned.city_.

s weeps.poor_.away_.pdf

In Greek:

- Αγριαντώνη, Χ.: Οι απαρχές της εκβιομηχάνισης στην Ελλάδα τον 19ο αιώνα, Ιστορικό Αρχείο Εμπορικής Τραπέζης, Αθήνα 1986
- Ανδρικοπούλου, Ε., Α. Γιαννακού, et al., 'Πόλη και πολεοδομικές πρακτικές', Κριτική, 2014.
- Αραβαντινός Αθανάσιος, 'Πολεοδομικός Σχεδιασμός', Συμμετρία, 2008.
- Αράπογλου Β., Καραδημητρίου Ν., Μαλούτας Θ., Σαγιάς Ι. (2021) Περιοχές αποστέρησης στην Αττική, διαθέσιμο στο <u>https://www.athenssocialatlas.gr/%CE%AC%CF%81%CE%B8%CF%81%CE%BF/%cf%80</u> <u>%ce%b5%cf%81%ce%b9%ce% bf%cf%87%ce%ad%cf%82-</u> <u>%ce%b1%cf%80%ce%bf%cf%83%cf%84%ce%ad%cf%81%ce%b7%cf%83%ce%b7%cf%</u> 82
- Βαίου Ν., Χατζημιχάλης Κ. (2012) « Ο χώρος στην αριστερή σκέψη» , Νήσος, Αθήνα
- Βατσέρης Χ., Καρτέρης Α., Κωστόπουλος Α., Παπαδόπουλος Α., (2012) «Οδηγός για τη Ρύπανση του εδάφους » LIFE So.S. Αειφορική διαχείριση εδάφους στην Υδρολογική λεκάνη του Ανθεμούντα με βάση την Ευρωπαϊκή Θεματική στρατηγι-κή για το έδαφος, Θεσσαλονίκη
- Γιδαράκος Ε., Αιβαλιώτη Μ., Γιαννής Α., Καλδέρης. (2009) «Μελέτη για τη διερεύνηση, αξιολόγηση και αποκατάσταση ανεξέλεγκτων ρυπασμένων χώρων / εγκαταστάσεων από βιομηχανικά και επικίνδυνα απόβλητα στην Ελλάδα», ΕΠΠΕΡ, Επιχειρησιακό Πρόγραμμα «Περιβάλλον», ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙ-ΒΑΛΛΟΝΤΟΣ Εργαστήριο Διαχείρισης Τοξικών & Επικινδύνων Αποβλήτων
- Δελλαδέτσιμας, Π., Μ., 'Οι Ασφαλείς Πόλεις', Αθήνα: Εξάντας, 2009.
- Δελλαδέτσιμας, Π.Μ. & Λουκάκης, Π., 'Η Πολιτική για τα Εμπορικά Κέντρα στην Ευρώπη', Αθήνα: IME-ΓΣΕΒΕΕ, 2013α.
- Δελλαδέτσιμας, Π.Μ., Λουκάκης, Π., 'Η Πολιτική για τα Εμπορικά Κέντρα στην Ελλάδα', Αθήνα: ΙΜΕ-ΓΣΕΒΕΕ, 2013β.
- Δέφνερ Α.Μ., Καραχάλης Ν.(2012) « Marketing και Branding τόπου», Πανεπιστημιακές Εκδόσεις Θεσσαλίας
- ΕΡΓΑΣΤΗΡΙΟ ΑΣΤΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΜΠ. Ανώνυμη ελληνική εταιρεία χημι-κών προϊόντων και λιπασμάτων (1909 – 1993). Παρελθόν και μέλλον ενός ιστορι-κού βιομηχανικού συγκροτήματος (Ιούνιος 2001)
- Καρύδης Δημήτριος, 'Ανάγνωση Πολεοδομίας, Η Κοινωνική Σημασία των Χωρικών Μορφών', Συμμετρία, 1993.
- Κάτσιος Ι., Τσάτσαρης Α. (2014) « Διαλέξεις Θεματικής Χαρτογραφίας », Δίσιγμα, Αθήνα
- Λεοντίδου Λ. (2001) « Πόλεις της Σιωπής», Πολιτιστικό Τεχνολογικό Ίδρυμα ΕΤΒΑ, Αθήνα
- Λεφεβρ Α. «Δικαίωμα στην Πόλη», Κουκίδα, Αθήνα
- Λουκάκης Π., 'Οι Πολεοδομικές και Χωροταξικές εξελίξεις στην Ελλάδα 1952-2012.

	Εμπειρίες Δράσης'. Πανεπιστημιακές Εκδόσεις Θεσσαλίας, Βόλος, 2017.
•	Μαλούτας Θ. Σπυρέλλης Σ. Ν. (2019) Ανισότητες και διαχωρισμοί στην Αθήνα: Χάρτες και δεδομένα,
	https://www.athenssocialatlas.gr/%CE%AC%CF%81%CE%B8%CF%81%CE%BF/%ce%b1 %ce%bd%ce%b9%cf%83%cf%
	8c%cf%84%ce%b7%cf%84%ce%b5%cf%82-%ce%ba%ce%b1%ce%b9-
	%ce%b4%ce%b9%ce%b1%cf%87%cf%89%cf%81%ce%b9%cf%83%ce%bc%ce%bf%ce% af-
	%cf%83%cf%84%ce%b7%ce%bd-%ce%b1%ce%b8%ce%ae%ce%bd/
•	Μαλούτας Θ., (2017) Πειραιάς 1951-2011: Δημογραφική στασιμότητα σε μια
	μητρόπολη με έντονες πληθυσμιακές διακυμάνσεις,
	https://www.athenssocialatlas.gr/%CE%AC%CF%81%CE%B8%CF%81%CE%BF/%cf%80
	%ce%b5%ce%b9%cf%81%ce% b1%ce%b9%ce%ac%cf%82-
	%cf%80%ce%bb%ce%b7%ce%b8%cf%85%cf%83%ce%bc%ce%b9%ce%b1%ce%ba%ce %ae-
	%cf%83%cf%84%ce%b1%cf%83%ce%b9%ce%bc%cf%8c%cf%84%ce%b7%cf%84%ce% b1/
•	Μηλιός, Γ.: Ο ελληνικός κοινωνικός σχηματισμός. Από τον επεκτατισμό στην καπιταλιστική ανάπτυξη, Κριτική, Αθήνα 2000.
٠	Μιχαηλίδης Τ.(2012) «Έργα ναυαρχίδες (flagship projects) και Μάρκετινγκ Πόλεων:
	διεθνής Εμπειρία από τις Ευρωπαϊκές πόλεις και η ελληνική προοπτική » στο Δέφνερ
	Α.Μ., Καραχάλης Ν.(2012) « Marketing και Branding τόπου», Πανεπιστημιακές Εκδόσεις Θεσσαλίας
•	Οικονόμου Δ. (2004) «Αστική αναγέννηση και πολεοδομικές αναπλάσεις», Τεχνικά
	Χρονικά ΤΕΕ Μάϊος- Ιούνιος 2004, ηλεκτρονική δημοσίευση στο
	http://portal.tee.gr/portal/page/portal/PUBLICATIONS/BYMONTHLY_ PUBLICATI
	ONS/diminiaia_2004/pub3/OIKONOMOY.pdf, ανακτήθηκε 6/8/2016
•	Σκάγιαννης Π., 'Πολιτική Προγραμματισμού των Υποδομών' Εκδόσεις Σταμούλης Αθήνα 1994.
٠	Σταυρίδης Σ, Κουτρολίκου Π, Βαταβάλη Φ, κ.ά. (2009) Μετασχηματισμοί της σχέσης
	δημόσιου-ιδιωτικού χώρου στα συγκροτήματα κοινωνικής κατοικίας των Ελληνικών
	αστικών κέντρων. Αθήνα: ΕΜΠ-Σχολή Αρχιτεκτόνων Μηχανικών, Πρόγραμμα
	Ενισχυτικής Βασικής Έρευνας.
•	Στεφάνου Ι, Χατζοπούλου Α και Νικολαΐδου Σ (1995) Αστική ανάπλαση. Πολεοδομία,
	δίκαιο, κοινωνιολογία. Αθήνα: Τεχνικό Επιμελητήριο Ελλάδας.
•	Τούση Ε., Σερράος Κ. (2020) "Brownfields: Περιβαλλοντικές και Κοινωνικο-
	οικονομικές διαστάσεις. Διεθνής
•	Εμπειρία και Ελλάδα" Πανεπιστημιακές Εκδόσεις Σάκκουλα, ΑΘήνα
•	Χάρβευ Ντ. (2012) « Εξεγερμένες πόλεις» , μτφ. Χαλμούκου Κ. , ΚΨΜ, Αθήνα
	Other relevant Sources:
•	«Resilient Cities Report 201 5: Global developments in urban adaptation and
	resilience - Based on the proceedings of the 6th Global Forum on Urban Resilience
	and Adaptation», Evgenia Mitroliou and Katja Müller, World mayors Council on
	Climate Change, ICLEI, Bon Germany June 2015
•	«Congress Report: 4th Global Forum on Urban Resilience and Adaptation». Alice

Balbo, Emily Dowding-Smith, Laura Kavanaugh, World mayors Council on Climate Change, ICLEI, Bonn, Germany, 2013

- European Commission 5th Framework Programme , Key Action "The City of Tomorrow and Cultural Heritage" , Energy, Environment and Sustain-able Development Thematic Programme (http://www.cordis.lu/eesd/)
- Trends in Urbanization and Urban Policies in OECD Countries: What Les-sons for China? OECD-CDRF project report, Mario Pezzini, Deputy Direc-tor, OEC D Directorate for Public Governance and Territorial Develop-ment. 2010, http://www.oecdilibrary.org/urban-rural-an d-regional-development/trends-in-urbanisation-andurban-policies-inoecd-countries_ 978926409225

GEO8150 – ECONOMIC GEOGRAPHY

COURSE OUTLINE: GEO8150 – ECONOMIC GEOGRAPHY

(1) GENERAL

SCHOOL	Engineering				
ACADEMIC UNIT	Department	Department of Surveying and Geoinformatics Engineering			
LEVEL OF STUDIES	Undergradua	ate Studies – Le	evel 7		
COURSE CODE	GEO8150		SEMESTER 8th		
COURSE TITLE	Economic Ge	eography			
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	nents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHING HOURS	CREDITS	
		Lectures	3	4	
Assignme	ents/Semeste	er Assignment	1	1	
		Total	4	5	
COURSE TYPE	Knowledge c	leepening & co	nsolidation		
PREREQUISITE COURSES:	-				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES				
COURSE WEBSITE (URL)	https://eclas	s.uniwa.gr/cou	irses/GEO205/		

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The aim of the course is to provide an overview and understanding of the general principles of Economic Geography as well as (economic) planning and spatial development. Upon successful completion of the course the student will be able to:

- Define the key concepts of economic geography.
- Understand the interrelations between economic activities and spatial planning.
- Collect, analyse, present and evaluate data on the geography of productive sectors in Greece and Europe.
- Understand the legislative framework of both economic activities and spatial planning.
- In deep analyse the spatial framework of specific economic activities and productive sectors.
- Read and understand policy making papers regarding spatial planning and its implication on economic/productive activities.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Gathering, analysis, and synthesis of data and information, using the necessary methods, tools, and techniques regarding economic geography.
- Develop semester assignment according to the guidelines.
- Read, understand, and analyse scientific research papers regarding economic geography.
- Read, understand, and analyse policy papers regarding economic geography.

(3) SYLLABUS

- 1. Overview of Political Economy, Economic Theories and Economic Geography literature.
- 2. Economic geography of the population.
- 3. Economic geography of the productive sectors.
- 4. Models for the location setting for the primary, secondary and tertiary sector.
- 5. Interactions between urban and rural areas regarding economic activities.
- 6. Internationalisation of the economy and its impact on spatial economic activities.
- 7. Economic activities at different scales.
- 8. Spatial interactions and transport.
- 9. IT and its implications in spatial planning and economic geography theories.
- 10. Applications and case-studies from the Greek context.

DELIVERY	Face-to-face		
USE OF INFORMATION ANDCOMMUNICATIONS	Power point, video and multimedia, e-class platform,		
TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are	Lectures	52	
described in detail.	Bibliography review	40	
The student's study hours for each learning	Semester assignment	33	
activity are given as well as the hours of non- directed study according to the principles of the ECTS	Course total	125	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure	Language: Greek Semester assignment: 100%	,	
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.			

(5) ATTACHED BIBLIOGRAPHY

English:

- Anderson, W., 2012. Economic Geography 1st Edition, Routledge.
- Barnes, T. and Christophers, B., 2018. Economic Geography: A Critical Introduction (Critical Introductions to Geography) 1st Edition, NJ, Wiley.
- Coe, N., Kelly, P., Yeung, H., 2007. Economic Geography: A Contemporary Introduction, Wiley-Blackwell.
- Combes, P.P, Mayer T. and Thisse J.F., 2008. Economic Geography. The Integration of Regions and Nations, Princeton University Press.
- Hudson, R., 2016. Approaches to Economic Geography: Towards a geographical political economy (Regions and Cities), Routledge.

Greek:

- Γιώτη-Παπαδάκη Ο., 2017. Εισαγωγή στην οικονομική γεωγραφία, Αθήνα, Εκδόσεις Κριτική.
- Καραβέλη Ε., 2016. Περιφερειακές ανισορροπίες και νέα οικονομική γεωγραφία, Αθήνα,
- ОПА.
- Λαμπριανίδης Λ., 2012. Οικονομική γεωγραφία, 2η έκδοση, Αθήνα: Πατάκης.

GEO8160 – INTERNSHIP

COURSE OUTLINE: GEO8160 - INTERNSHIP

(1) GENERAL

SCHOOL	Engineering				
ACADEMIC UNIT	Department	Department of Surveying and Geoinformatics Engineering			
LEVEL OF STUDIES	Undergradua	ate Studies – Le	evel 7		
COURSE CODE	GEO8160		SEMESTER	8 th	
COURSE TITLE	Internship				
INDEPENDENT TEACHING ACTIVITIES WEEKLY if credits are awarded for separate components of the course, e.g. lectures, Ideoratory exercises, etc. If the credits are awarded for the whole of the TEACHING course, give the weekly teaching hours and the total credits HOURS CRED			EDITS		
	•	Total		5	
COURSE TYPE	skills develor	oment			
PREREQUISITE COURSES:	No				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	-				
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The internship aims to deal with the range of work of the Surveying Engineer in topographic, geodetic, photogrammetric, cadastral, environmental, and hydraulic studies, studies of transport projects and road construction projects, as well as in Geographic Information Systems, their Remote Sensing and applications.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Applying knowledge in practice
- Gathering, analysis, and synthesis of data and information, using the necessary methods, tools, and techniques regarding economic geography.
- Adapting to new situations.
- Decision making
- Autonomous work
- Team work.
- Work in an interdisciplinary environment.
- Project design and management.
- Diversity and multiculturalism
- Natural environment
- Demonstration of social, professional and moral responsibility.
- Criticism and self-criticism exercise.
- Promoting of free, creative and inductive thinking

(3) SYLLABUS

The internship is carried out in the productive sector (companies, organizations, technical or design offices, etc.) in order to acquaint and familiarize the students with their future object of employment. The internship is conducted in the winter or summer semester of the 6th and 7th Semester and is addressed to students who have completed the sixth or seventh semester, so that there is the necessary knowledge and therefore the greatest benefit for students. The total duration of the internship is 12 weeks. The company / technical-design office undertakes to employ the students under the supervision of an engineer or another scientist and a faculty member of the Department. The supervisor on behalf of the company certifies with a monthly and a final report the object of employment and the smooth conduct of the internship (trainer evaluation report). The student submits to the faculty member of the department (internship supervisor) a monthly and final technical report related to his / her work, the object of employment and the smooth conduct of the supervisor of the participate in the program are those students who study in the 6th or 7th Semester of Studies of the Department and have not participated in the internship program in the past.

The selection criteria are: a) Priority for 6th or 7th Semester students, b) the number of courses in which they have succeeded and c) the aggregate grade. The above criteria are in prioritized as follows: If more than one student has applied for the same position, then the semester is checked, then the number of courses and if there are still draws then the score.

DELIVERY	Face-to-face
USE OF INFORMATION ANDCOMMUNICATIONS	Communication with trainees via e-mail
TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure	Technical report of the student's activities. Written Assignment (Concluding).
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	

GEO8170 – REINFORCED CONCRETE

COURSE OUTLINE GEO8170 - REINFORCED CONCRETE

(1) GENERAL

SCHOOL	SCHOOL OF	ENGINEERING		
ACADEMIC UNIT			IG AND GEOINFO	RMATICS
	ENGINEERIN			NMATIC5
LEVEL OF STUDIES				
	Undergradua	ate		
COURSE CODE	GEO817		SEMESTER 8 th	
COURSE TITLE	Reinforced c	oncrete		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	nents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHIN GHOURS	CREDITS
	Lectures 3			
	Exerc	ises/ tutorials	1	
		Total	4	5
COURSE TYPE	special back <u>e</u>	ground		
PREREQUISITE COURSES:	Preferred pr	erequisite knov	vledge: Engineeri	ng Mechanics
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes			
COURSE WEBSITE (URL)	https://eclas c=75	s.uniwa.gr/mo	dules/auth/open	courses.php?f

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The successful completion of the course allows students to:

- Understand the basic properties of cement and concrete, its performance under loading
- Choose between various types of special concretes
- Design simple structural elements; beams columns slabs
- $\circ \quad \text{Understand the current design codes}$
- Be aware of the legal liabilities as a site engineer Greek code of concrete technology

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Decision-making
- Working independently
- Criticism and self-criticism
- Production of free, creative and inductive thinking

(3) SYLLABUS

The main components of the syllabus are as follows:

- Strength of materials revision on engineering mechanics
- Concrete and its constituents stress strain curves
- Steel and its mechanical characteristics
- Reinforced concrete and limit state design Eurocodes 1 and 2
- Special concretes (fibre reinforced, self-compacting, ultra-high performance, etc)
- Reinforced concrete beam design under Eurocode 2
- Reinforced concrete column design under Eurocode 2
- Reinforced concrete slab design under Eurocode 2
- Detailing shear walls and foundations
- Legal liabilities as a site engineer Greek code of concrete technology

DELIVERY Face-to-face, Distance learning, etc.	Face-to-Face	
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Web search (literature re Utilization of E-class UNIV among professors and stu Videos Email Office software (word, pr editors) 	VA platform (file exchange idents)
TEACHING METHODS	Activity	Semester workload
The manner and methods of teaching are	Lectures	52 (13 X 4)
described in detail. The student's study hours for each learning	Study and analysis of bibliography	52 (13 X 4)
activity are given as well as the hours of non- directed study according to the principles of the	Laboratory practice	-
ECTS	Lab exercises	-
	Educational visits	-

	Course total	104
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	questionnaires, short	nester (multiple choice -answer questions, & stions) accounting for 20% - (multiple choice • questions, & problem-

(5) ATTACHED BIBLIOGRAPHY

- Bill Mosley, John Bungey, Ray Hulse. 2012, Reinforced concrete design to Eurocode 2, 7th Edition Bloomsbury Publishing ISBN: 9780230302853
- Mehta P. Kumar, Monteiro Paulo J. M.2014, Concrete: Microstructure, Properties, and Materials 4th Edition, McGraw-Hill - ISBN-13: 978-0071797870
- o Lecture notes

GEO8180 – DEEPENING IN GEOGRAPHIC INFORMATION SYSTEMS

COURSE SYLLABUS: GEO8180 – DEEPENING IN GEOGRAPHIC INFORMATION SYSTEMS

(1) GENERAL

SCHOOL	SCHO	OOL OF ENGI	NEERING			
ACADEMIC UNIT	DEPA	DEPARTMENT OF SURVEYING AND GEOINFORMATICS ENGINEERING				
LEVEL OF STUDIES	MSc.					
COURSE CODE	GEO	8180	SI	EMESTER	8 th	
COURSE TITLE	Deep	pening in Ge	ographic Informatio	on System	s	
INDEPENDEN if credits are awarded for separ laboratory exercises, etc. If th course, give the weekly	rate con ne credit	nponents of the c is are awarded fo	ourse, e.g. lectures, r the whole of the	WEEK TEACH HOUI	ING	CREDITS
			Lectures	3		4
			Lab exercises	1		1
			TOTALS	4		5
COURSE 1	COURSE TYPE Specialization					
PREREQUISITE COURS	ES:	Spatial Dec	ision Support Syster	ns		
LANGUAGE OF INSTRUCTI EXAMINATIO	and	Greek				
IS THE COURSE OFFERED ERASMUS STUDEN		Offered (En	iglish)			
COURSE WEBSITE (U	RL)	https://ecla	ass.uniwa.gr/course	<u>s/GEO204</u>	L	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The aim of the course is to present the necessary methodologies of geospatial analysis and its applications in continuous and discontinuous spatial data models, using modern tools, methods, and techniques in an ever-changing competitive environment.

The aim of the course is to understand the theoretical framework of the methodologies of geospatial analysis and their application under the environment of Geographic Information Systems so that students are able to properly manage and structure geospatial data and to explore and interpret the results of their analyzes.

Because by its nature the science of Geographical Information is an interdisciplinary subject, which in addition to the high standards of its theoretical existence has a large section for the application of its methods, the course material is structured in two distinct but interconnected sections (theoretical and applied). It aims to deepen the specialized knowledge concerning methodological and operational issues of analysis of geospatial information in the appropriate way, which leads to its emergence, as the main factor that influences decision-making with parameters that depend on natural and man-made. The specialized knowledge and skills acquired by the students attending the course do not lead to a sterile and strictly theoretical training, but through a known and passable for the average of the students in the 7th level of complexity of the subjects that are addressed, they are faced with issues that will be called upon to face in the labor market. In addition, they receive all those cognitive supplies and skills, which in combination with the more

specific cognitive subjects of Geographical Information Science contained in their curriculum, acquire the opportunity to claim their place at the next level of their studies.

According to the design of the content of the specific subject, students cognitively approach the following:

a) Spatial relationships between continuous and discontinuous spatial entities, Spatial distribution models and the identification of spatial patterns with specific characteristics and properties

b) The results of the application of surface analysis methods

d) The methods and results of the applications of the interpolations

e) Location and network models

h) The processes of designing spatial planning and planning solutions from the perspective of decision support systems using GIS.

f) The critical evaluation of spatial analysis methods.

Therefore, the objectives of this subject matter extend to a description of those who have successfully attended this subject, which has the following characteristics:

a) The assimilation of theoretical and objective knowledge regarding the analytical and synthetic treatment of geospatial information that leads to representative and specialized geographical issues, through the knowledge of methodologies and models of spatial analysis, spatial statistics, geostatistics, models location and network theory, using modern commercial and free/open-source software and its diffusion on the internet.

b) The development of mental and practical skills in solving problems of analysis and transformation of geographical space.

c) The development of skills through the synthetic creation and support of arguments during the spatial transformation, reinforcing in terms of responsibility and autonomy for the acquisition of sufficient capacity for further professional and personal development.

d) The development of possibilities of a professional approach to the object through the use of the knowledge and understanding acquired during the design and implementation of applications that complete a spatial decision-making system.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search, analysis, and synthesis of data and information, using the necessary technologies
- Adaptation to new situations
- Decision making
- Autonomous work
- Teamwork
- Exercise criticism and self-criticism
- Promoting free, creative, and inductive thinking

(3) SYLLABUS

Theoretical Part of the Course

- 1. The conceptual framework of spatial analysis using GIS
 - Terminology
 - Basic principles and methods
 - The concept of entity in spatial analysis, characteristics and properties
- 2. Spatial Analysis Methodology in Discontinuous and Continuous Spatial Data Models
 - Geospatial data structure
 - Spatial Relations
 - Geographic Data Interactions

- Computational methods and models in geospatial analysis
- Spatial Statistics (distance, density, regression and autocorrelation)
- 3. Creation of statistical surfaces through spatial interpolation
 - Statistical surfaces and surface models
 - Causal methods of interpolation
 - Geostatistical interpolation methods
 - Examples of understanding
- 4. Analysis of statistical surfaces
 - Detailed procedures on surfaces (slopes, orientation, shading maps, isosceles curves, sections and cross sections)
 - Visibility analysis
 - View shed Analysis
 - Volumetric calculations
- 5. Basic principles of location allocation models
 - Introduction to network and location analysis
 - Basic problems in network analysis
 - Network Construction, Optimal Routes and Optimal Tours
 - Identification of accessibility problems
 - The location allocation model
- 6. Support for spatial decisions in GIS:
 - Elements of multi-criteria analysis
 - Problems in multicriteria analysis
 - Distinguish between multiple goals multiple properties
 - Decision making procedure and rules
 - Evaluation criterias
 - Sensitivity analysis
 - Multicriteria analysis functions in GIS environment

Applied Part of the Course

- Applications of Spatial Analysis functions using modern commercial and free / open source GSP software.
- Creating models in a GSP environment with specialized applications in interdisciplinary spatial problems
- Interoperability

DELIVERY	Face-to-Face			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Web search (literature review and Utilization of E-class UNIWA platf among professors and students) Use of email Use of specialized software (both source) for the manipulation, edit geospatial data Use of Office software (word, pre spreadsheets) 	orm (file exchange commercial and open ting and mapping of the		
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described	Lectures	39		
in detail.				

The studentia stude hours for each locuries estimit.	Study and analysis of bibliography	30	
The student's study hours for each learning activity are given as well as the hours of non- directed study	Study elaboration	35	
according to the principles of the ECTS	Lab exercise	13	
	Seminar (*)	8	
	(*) Specialized lecture on issues that	t fall within the subject	
	matter, by scientists in the field		
	Course total		
	(30 hours of workload per credit	120	
	unit)		
STUDENT PERFORMANCE	Language of Evaluation: Greek		
EVALUATION	Evaluation Methods:		
Description of the evaluation procedure	• Written exam at the end of the	semester (Multiple	
Specifically-defined evaluation criteria are given,	choice, short development and	problem-solving	
and if and where they are accessible to students	exercises)		
, ,	 Homework evaluation (development of theoretical 		
	topic and commentary of scient		
	Evaluation of laboratory work (gradual development of		
	project for management and analysis in a GIS		
	environment)		
	Oral presentation of work (Ms Office presentation of		
	the theoretical topic)		

(5) ATTACHED BIBLIOGRAPHY

Books

- 1. Halkias Ch., 2015. Geographical Analysis Using Geoinformatics. (Greek language) https://repository.kallipos.gr/handle/11419/4546
- 2. Kavouras, M. et al, 2016. Geographic Information Science Integrated Approach and Special Topics (Greek language). https://repository.kallipos.gr/handle/11419/6381
- 3. Pappas, V, 2011. GIS in Spatial Planning: Scientific Edition of the University of Patra (Greek language)
- 4. Koutsopoulos K., 2002. GIS and Spatial Analysis, Publication in Greek language, by Papasotiriou Editions.
- 5. Alibrandi, M, Fitzpatrick, 2003, GIS in the classroom: Using Geographic Information Systems in social studies and environmental science, Portsmouth, NH: Heinemann
- 6. DeMers, M, 2002, GIS modeling in raster, New York: Wiley.
- 7. Hunsaker, C, 2001, Spatial uncertainty in ecology: implications for remote sensing and GIS applications, New York: Springer.
- 8. Lawson, A, Denison, D, 2002, Spatial cluster modeling, Boca Raton, FL : Chapman & Hall/CRC
- 9. Malczewski, J, 1999, GIS and multicriteria decision analysis New York: Wiley.
- 10. Stillwell, J, Clarke, G, 2004, Applied GIS and spatial analysis, Wiley

Web pages

- 11. http://www.csiss.org/ (Center for Spatially Integrated Social Science)
- 12. http://teachspatial.org/ (Resources for Spatial Teaching & Learning)
- 13. http://gispopsci.org/software/ (Advanced Spatial Analysis program)
- 14. http://www.spatialanalysisonline.com/ (Geospatial Analysis A comprehensive guide)

15. http://www.gitta.info/website/en/html/index.html (Geographic Information Technology Training Alliance)

Scientific Journals

- 16. International Journal of Geographical Information Science, Taylor & Francis
- 17. Journal of Spatial Science, Taylor & Francis
- 18. Geoinformatica, Springer
- 19. Journal of Geographical Systems, Springer
- 20. GISciences & Remote Sensing, Bellwether Publishing, Ltd.
- 21. Journal of Geographic Information System, Scientific Research
- 22. ISPRS-International Journal of Geo-Information (IJGI is an open access journal of MDPI)

GEO8190 – ENVIROMENTAL IMPACTS

COURSE OUTLINE: GEO8190 – ENVIROMENTAL IMPACTS

(1) GENERAL

SCHOOL	Engineering			
ACADEMIC UNIT	Department	of Surveying a	nd Geoinformatio	s Engineering
LEVEL OF STUDIES	Undergradua	ate Studies – Le	evel 7	
COURSE CODE	GEO8190		SEMESTER 8th	
COURSE TITLE	Environmen	tal Impacts		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	nents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHIN GHOURS	CREDITS
		Lectures	3	4
Assignme	ents/Semeste	er Assignment	1	1
		Total	4	5
COURSE TYPE	Knowledge c	leepening & co	nsolidation	
PREREQUISITE COURSES:	-			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES			
COURSE WEBSITE (URL)	https://eclas	s.uniwa.gr/cou	irses/GEO246/	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The aim of the course is to provide an overview and understanding of the environmental legislation as well as skills and competencies for the preparation of Environmental Impact Assessment Reports.

Upon successful completion of the course the student will be able to:

- Understand the institutional framework of Environmental Licencing.
- Understand the legislative framework of Environmental Licencing.
- Define the key issues considered for Environmental Impact Assessment.
- Use different techniques and methods for defining Environmental Impacts.
- Assess the environmental impacts of technical and construction projects at different scales.
- Focus on the European legislative framework for environmental licencing.
- Focus on the Greek legislative framework for environmental licencing.
- Participate in interdisciplinary teams for Environmental Impact Assessment Reports.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Gathering, analysis, and synthesis of data and information, using the necessary methods, tools, and techniques regarding environmental impacts.
- Develop semester assignment according to the guidelines.
- Read, understand, and analyse scientific research papers regarding environmental impacts.
- Read, understand, and analyse policy papers regarding environmental impacts.

(3) SYLLABUS

- 1. Environmental History.
- 2. The institutional framework of environmental licensing globally.
- 3. The European environmental legislation framework.
- 4. The Greek environmental legislation framework.
- 5. Differences between Environmental Impact Assessment Reports and Strategic Environmental Impact Assessment Reports.
- 6. Techniques, methods, and tools for minimising environmental impacts.
- 7. Assessing environmental impacts.
- 8. Categorising projects and activities regarding their environmental impacts.
- 9. Typical chapters of an Environmental Impact Assessment Report.
- 10. Developing an Environmental Impact Assessment Report.
- 11. Analysing an Environmental Impact Assessment Report.

DELIVERY	Face-to-face		
	Power point, video and multimedia, e-class platform,		
ANDCOMMUNICATIONS	e-journals, e-legislation.		
TECHNOLOGY			
Use of ICT in teaching, laboratory education, communication with students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	52	
	Bibliography review	40	
The student's study hours for each learning	Semester assignment	33	
activity are given as well as the hours of non- directed study according to the principles of the ECTS	Course total	125	
STUDENT PERFORMANCE	Language: Greek		
EVALUATION	Semester assignment: 100%		
Description of the evaluation procedure			
Specifically-defined evaluation criteria are			
given, and if and where they are accessible to students.			

(5) ATTACHED BIBLIOGRAPHY

English:

- Calvario, R., Kaika, M., & Velegrakis, G., (2022) (eds.). The Political Ecology of Austerity: environment, social movements, and economic crisis. Routledge Explorations in Environmental Studies. DOI: 10.4324/9781003036265.
- Glasson J., Therivel R. and Chadwick A. 2019. Introduction to Environmental Impact Assessment, 5th Edition, Routledge.
- Jones, O. (2009). After Nature: Entangled Worlds. Στο Castree, N., Demeritt, D., Liverman, D., & Rhoads, B. (επιμ.) A Companion to Environmental Geography, σ. 294 -312. Oxford: Wiley - Bleckwell.
- Noble B. 2016. Introduction to Environmental Impact Assessment: A Guide to Principles and Practice, 3rd Edition, Oxford Univ Pr.
- Robbins, P. (2015). The trickster science. Στο Perreault, T., Bridge, G., & McCarthy, J. (επιμ.) The Routledge Handbook of Political Ecology, σ. 89 - 101. London and New York: Routledge.
- Watts, M. (2015). Now and Then The origins of political ecology and the rebirth of adaptation as a form of thought. Στο Perreault, T., Bridge, G., & McCarthy, J. (επιμ.) The Routledge Handbook of Political Ecology, σ. 19 50. London and New York: Routledge.

Greek:

- Βαβίζος Γ., Βερροιόπουλος Γ., Bendali F. 2008. Εγχειρίδιο Μελέτης του Φυσικού Περιβάλλοντος, Παπασωτηρίου, Αθήνα.
- Βατάλης Κ. 2010. Αειφορική Διαχείριση Περιβαλλοντικές Επιπτώσεις Έργων, ΑΛΕΞΑΝΔΡΟΣ Σ. Ι.Κ.Ε.
- Μπάλιας Γ. 2018. Η εκτίμηση περιβαλλοντικών επιπτώσεων στην Ευρωπαϊκή Ένωση Εκδόσεις Παπαζήση.

GEO8200 – COMPUTER GRAPHICS

COURSE OUTLINE: GEO8200 - COMPUTER GRAPHICS

(1) GENERAL INFORMATION

SCHOOL	School of E	ngineering		
ACADEMIC UNIT	Departmen	Department of Surveying and Geoinformatics		
	Engineering	5		
LEVEL OF STUDIES	Undergrad	uate		
COURSE CODE	GEO8200	SEMESTER		8 th
COURSE TITLE	COMPUTER	R GRAPHICS		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	onents of the course, e.g. lectures, are awarded for the whole of the			G CREDITS
	Lectures 4(3/1) 5			5
	Total 4 5			
COURSE TYPE	Knowledge consolidation			
PREREQUISITE COURSES:	Linear Algebra and Matrices, Analytical Geometry, Computer Science and Programming, Programming techniques and Algorithms			
LANGUAGE OF INSTRUCTION AND EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/GEO258/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The goal of the course is to introduce topography engineering students to the field of computer graphics, and acquaint them to elementary notions and techniques. Furthermore, to introduce students to the understanding of the relation of computer graphics to theoretical subjects introduced in earlier semesters (e.g. analytical geometry, linear algebra) as well as provide an overview of applications and the use of graphics technology in modern topography.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Working independently
- Production of free, creative and inductive thinking

(3) SYLLABUS

Introduction: Introduction to graphics, historical overview, applications, elementary notions.

Drawing algorithms: Introduction, mathematical curves and finite differences, line drawing algorithms. Checking for internal points, polygon drawing. Antialiasing in space: Antialiasing with pre-filtering, antialiasing with post-filtering, clipping algorithms in 2D: point clipping, line clipping (Cohen-Sutherland, Skala, Liang-Barksy), polygon clipping (Sutherland-Hodgman, Greiner-Horman algorithms).

Coordinates systems and transformations in 2D and 3D: Introduction to transformations, affine transformations, transformation compositions, 2D and 3D homogeneous affine transformations. Representation of rotations with quaternions.

Projections: Perpsective projection, parallel projection, observation transformation.

Removing hidden surfaces: Z-buffer algorithm.

Colour in graphics and optimization: Gray-scale and colour images.

Parametric curves and surfaces: Bezier curver, deCasteljau algorithm, Bernstein polyonyms.

Lighting / shading algorithms. Phong model, Gouraud model.

A number of the presented techniques are to be implemented during the course using the Python programming language, such as line drawing techniques, point transformations, drawing of parametric curves.

DELIVERY	Face-to-face		
USE OF INFORMATION AND	Web search (literature review and data sources)		
COMMUNICATIONS	Utilization of E-class UNIWA platform (file exchange		
TECHNOLOGY	among professors and students)		
Use of ICT in teaching, laboratory education,	Email		
communication with students	Specialized software and libraries (both commercial and open source) for the manipulation and editing of numerical and geospatial data Source code editors Office software (word, presentations, spreadsheets editors)		
TEACHING METHODS	Activity Semester workload		
The manner and methods of teaching are	Lectures	39	
described in detail. The student's study hours for each learning activity are given as well as the	Laboratory practice	13	
hours of non-directed study according to the	Exercise preparation	40	
	Study of theory 58		
principles of the ECTS.	Study of theory	58	
principles of the ECTS.	Study of theory Course Total	58 150	
principles of the ECTS. STUDENT PERFORMANCE		150	
	Course Total	150	

aiven and if and where they are accessible to	 Written exam at the end of the semester (multiple choice questionnaires, short-answer questions, & problem-solving questions) Homework (practical exercises on both theoretical and practical objectives related to

(5) RECOMMENDED LITERATURE

1. Theocharis T., Papapioannou G., Platis N., Patrikalakis N., "Graphics and Visualization: Principles and algorithms", 2019.

In Greek:

2. Bardis G., "Γραφικά Υπολογιστών & Προγραμματισμός WebGL", 2020.

9th Semester

GEO9010 – TECHNICAL LEGISLATION & ADMINISTRATION

COURSE OUTLINE: GEO9010 - TECHNICAL LEGISLATION & ADMINISTRATION

(1) GENERAL

SCHOOL	SCHOOL OF	SCHOOL OF ENGINEERING		
ACADEMIC UNIT	DEPARTMEN	DEPARTMENT OF SURVEYING AND GEOINFORMATICS		
	ENGINEERIN	IG		
LEVEL OF STUDIES	Undergradu	ate		
COURSE CODE	GEO9010		SEMESTER 9 th	
COURSE TITLE	TECHNICAL I	EGISLATION 8		ON ELEMENTS
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	onents of the course, e.g. lectures, are awarded for the whole of the WEEKLY CREDITS			CREDITS
	3 5			
	TOTAL 3 5			
COURSE TYPE	General background [obligatory]			
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:				
IS THE COURSE OFFERED TO ERASMUS STUDENTS				
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/modules/auth/opencourses.php?f c=75			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course aims to introduce students in technical legislation and administration basic regulation.

After successful course completion, students are expected to have knowledge on:

- a) Know and understand fundamental legal terms
- b) Structure and principles of Greek Constitution and Greek Legal Framework, especially in technical issues and aspects
- c) Basic corporate schemes and legislation on properties
- d) Legislation on topographical surveys, cadaster, spatial/ urban planning, environment, public works and public procurements
- e) The structure of Courts in Greece and the EU
- f) Public Bodies in Greece, local, regional governmental and the EU, especially in respect to geoinformatics/ survey aspects

g) To review and comprehend existing legislation on relevant technical issues/ aspects

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adaption to new work conditions
- Decision-making
- Independent work
- Team work
- Self-evaluation
- Free, creative and inductive thinking

(3) SYLLABUS

Theory

- Fundamental legal principles.
- Greek Constitution (technical aspects). Greek legal framework and Civil Code on aspects of technical interest (topography geoinformatics).
- Relevant legislation on topographic/ geoinformatics surveys.
- Legislation on spatial Urban Planning and the role of the Council of State.
- Legislation on Cadastre and environmental protection.
- Structure of Courts in Greece and the EU
- The regulatory impact of official legal/ administrative documents
- Structure of Greek Central, Regional and Local Administration
- Administrative Bodies, in Greece and the EU. Other Scientific Bodies (EU Council, FIG, Technical Chamber of Greece etc.)
- The use of IT on scientific search for legal documents and administrative acts/ decisions.

Course exercises

Practical exercises on:

- Review of Council of State Decision
- Review of legal technical provisions on environmental protectio

DELIVERY	Face-to-Face		
USE OF INFORMATION	 Web search (legislation and literature review) 		
ANDCOMMUNICATIONS	 E-class UNIWA platform and office Microsoft 365 		
	UNIWA tools (TEAMS, Class Notebook, Shared docs,		
Use of ICT in teaching, laboratory education,	email)		
communication with students	GIS and CAD software		
	• Office software (word, presentations, spreadsheets		
	editors)		
TEACHING METHODS	Activity Semester workload		
The manner and methods of teaching are	Lectures (Theory – 39 (13*3)		
described in detail.	exercises)		

The shudestle study have for each large		81	
The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS		120	
	Evaluation Language: Greek (English)		
EVALUATION Description of the evaluation procedure	Evaluation methods:		
Description of the evaluation procedure	• Written exam (winter or September exams period)		
	• Team projects personal projects, class exercises.		
Specifically-defined evaluation criteria are			
given, and if and where they are accessible to			
students.			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

Καράκωστας Ιωάννης. 'Περιβάλλον και Δίκαιο. Δίκαιο διαχείρισης και προστασίας των περιβαλλοντικών αγαθών', 3η εκδ. Νομική Βιβλιοθήκη, 2011.

Μέλισσας, Δημήτρης Κ.. 'Νέος Οικοδομικός Κανονισμός (Ν. 4067/2012) - Ερμηνεία Κατ' άρθρο'. Εκδόσεις Σάκκουλα, 2012.

Παντελίδου, Καλλιρόη. 'Γενικές αρχές αστικού δικαίου'. Εκδόσεις Σάκκουλα, 2016.

Τζίκα-Χατζοπούλου Αλίκη. 'Στοιχεία Δικαίου, Εθνικό και Ευρωπαϊκό Δίκαιο'. ΕΜΠ, 2004 Τζίκα-Χατζοπούλου Αλίκη. 'Δημόσια Έργα'. Παπασωτηρίου 2006.

Χριστοφιλόπουλος, Δημήτρης Γ. 'Τροποποίηση ρυμοτομικών σχεδίων. Τόμος 1ος, Εκπόνηση έγκριση - εφαρμογή πολεοδομικών σχεδίων- Ν.Δ.17-7-1923 περί σχεδίων πόλεων, όπως ισχύει με τους Ν.3044/2002 και 3852/2010'. Εκδόσεις Σάκκουλας Π. Ν., 2011. Legislation.

Related web pages/ portals:

https://europa.eu/european-union/law_el http://www.et.gr/ https://www.hellenicparliament.gr/en/ https://www.adjustice.gr https://europa.eu/european-union/index_el https://europa.eu/european-union/about-eu/institutions-bodies_el https://eur-lex.europa.eu/homepage.html

GEO9020 – MOBILE MAPPING – UNMANNED AERIAL VECHICLE (UAV)

COURSE OUTLINE: GEO9020 MOBILE MAPPING – UNMANNED AERIAL VECHICLE (UAV)

(1) GENERAL

SCHOOL	ENGINEERING			
ACADEMIC UNIT	DEPT. OF SURVEYING & GEONIFORMATICS ENGINEERING			
LEVEL OF STUDIES	Graduate –	Level 7		
COURSE CODE	GEO9020		SEMESTER 9 th	
COURSE TITLE	Mobile Map	ping - Unmanr	ed Aerial Vehicle	e (UAV)
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are awar the weekly teaching hours ar	inents of the course, e.g. lectures, arded for the whole of the course, give TEACHING CREDIT		CREDITS	
	Lec	tures and Labs	4(2/2)	5
	TOTAL 4 5			
COURSE TYPE	Skills development			
PREREQUISITE COURSES	No prerequisite courses. Suggested completion of courses Special Topics in Photogrammetry & Computer Vision, Digital Systems & Sensors, Theory of Errors & Adjustment of Observations II, Programming Techniques & Algorithms			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
OFFERED TO ERASMUS STUDENTS	Can be taught in English			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/modules/auth/opencourses.php?fc =75			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Basic purpose of this course is the familiarization of students with state-of-the-art methods for collecting 3D geospatial data of high resolution and in large scales (close-range), with the emphasis mainly on applications using moving recording platforms (mobile mapping) as well sensors on UAVs. The student will have the opportunity to plan such missions, follow the data collection steps and primarily to better understand the photogrammetric processes for producing 3D models from such imagery.

Successful completion of this course means that students

• Have understood and are able to describe, analyze and compare the particular types of UAVs used in precision mapping (pros – cons) as well as their systems of recording, mapping

and navigation.

• Are able to describe, analyze and compare the different Mobile Mapping Systems (MMS) and the operation principles of their mapping sensors.

• Are in position to design UAV recording flights and MMS mapping projects and ecaluate the quality of data provided be the sensors.

• Ara able to calibrate the optical sensors of these systems either by using calibration fields or during the recording phase.

• Can implement all individual steps of a photogrammetric mapping process using UAV platforms or MMSs (data collection, their processing and analysis, production of final 3D products and of metric textured projections, interpretation and evaluation of results).

• Are capable of applying Structure-from-Motion solutions in combination with synchronous GPS/INS observations or ground control point (GCP) measurements.

• Have understood and are capable of describing, analyze and compare the methods of SLAM, visual SLAM and visual odometry, and further they can apply them on video sequences from UAV platforms and MMS using open-source software.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Working independently
- Teamwork
- Production of free, creative and inductive thinking
- Working in an interdisciplinary environment

(3) SYLLABUS

Analysis of stat-of-the-art technologies in mobile mapping systems and UAV. Categorization according to system type, operation principle, automated navigation (GNSS navigation, inertial systems INS-IMU, optical data obstacle avoidance), sensor types and data collected. Basic principles of planning for data recording with UAVs (fixed-wing and drone) and mobile mapping systems. Sensor calibration. Techniques of optical navigation (SLAM, visual odometry).

Photogrammetric data processing – automatic image orientation using extracted interest points and combined GPS-INS observations, introduction of ground control points and accuracy assessment, image-based generation of 3D models via dense matching techniques. Application for generation of 3D city and/or building models.

Combination/comparison with data from laser scanning and terrestrial images. Triangulation from mobile mapping systems – accuracy of results. αποτελεσμάτων. Automatic digitization of road signs.

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face
USE OF INFOMATION AND COMMUNICATIONS	 Support by the electronic asynchronous course platform
TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	

	 Use of software for 3D data processing 			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	26		
The student's study hours for each learning	Laboratory / Exercises	26		
activity are given as well as the hours of non-	Project	38		
directed study according to the principles of the ECTS	Non-directed study	60		
	Course total	150		
STUDENT PERFORMANCE	Language of evaluation: Greek			
EVALUATION Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Methods of Evaluation:Evaluation of performance in the Lab exercises.Oral presentation of project.			

(5) SUGGESTED BIBLIOGRAPHY

- 1. Course Notes and Slides (in Greek)
- 2. Szeliski R., 2010. Computer Vision: Algorithms and Application. Springer (http://szeliski.org/Book/)
- 3. Hartley R., Zisserman A., 2000. Multiple View Geometry in Computer Vision. Cambridge Univ. Press
- 4. Förstner W., Wrobel B. P., 2016. Photogrammetric Computer Vision. Springer

GEO9030 – APPLIED SATELLITE POSITIONING

COURSE OUTLINE: GEO9030 - APPLIED SATELLITE POSITIONING

(1) GENERAL

SCHOOL	ENGINEERIN	G			
ACADEMIC UNIT		SURVEYING AND GEOINFORMATICS ENGINEERING			
			RIVIATICS ENG	IINEE	RING
	UNDERGRAD				
COURSE CODE	GEO9030	S	EMESTER	9 th	
COURSE TITLE	APPLIED SAT	ELLITE POSITIO	ONING		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	re awarded for the whole of the WEEKLY CREDITS			CREDITS	
	LECTURES 3 4			4	
	LABORATORY EXCRCISES 1			1	
	TOTAL 4 5				
COURSE TYPE	skills development				
PREREQUISITE COURSES:	No prerequisite courses. It is recommended that the				
	students have obtained the fundamental knowledge of				
	the course "Satellite Surveying".				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES (ENGLIS	6H)			
COURSE WEBSITE (URL)	https://ecla	<u>ss.uniwa.gr/co</u>	urses/GEO20	0/	

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The aim of this course is to extend the fundamental knowledge on GNSS offered in the 5th semester by the course "Satellite Surveying" so that the student learn about more advanced methods that are used in geosciences, like multi GNSS, kinematic positioning for supporting geodata collection on land-sea-air, GNSS networks etc. The course focuses on advanced positioning techniques, precise orbits, new satellite signals. Further, the course extends the offered knowledge from GPS to GLONASS, GALILEO and BEIDOU. Emphasis is given on processing algorithms.

Upon successful completion of the course students will be able to:

- have a more complete picture of the uses of satellite positioning for surveying and geodesy
- use all available GNSS: GPS, GLONASS, GALILEO, and BEIDOU
- understand the characteristics of the different orbits used in GNSS (MEO, GEO, IGSO)
- better understand the techniques for ambiguity resolution like linear combinations

- (wide lane, narrow lane, geometry free) and the acceptance criteria
- transform between all coordinate reference frames involved in satellite surveying: WGS84, PZ90, GTRF, CGCS2000
- transform between global and local reference frames: WGS84, ITRS, ETRS89, HTRS07 and GGRS87
- apply more advanced techniques like kinematic, semi-kimematic and PPK etc.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Working independently
- Decision-making
- Team work
- Production of new research ideas
- Criticism and self-criticism
- Project planning and management

(3) SYLLABUS

Theoretical part:

- Applications of static, rapid-static, kinematic, Stop&Go, RTK and PPK
- very long baselines
- post-processing of semi-kinematic measurements,
- post-processing of kinematic measurements,
- real-time surveys, stake-out.
- linear combinations: wide lane, narrow lane, geometry free
- Orbits used in GNSS: MEO, GEO, IGSO
- Satellite ephemerides: broadcast vs. precise
- Ambiguity resolution techniques
- Precise satellite orbits.
- Establishment/densification of GNSS networks for geodetic applications: design, measurements and data processing.
- Differences between GPS and other GNSS (GLONASS, GALILEO, BEI-DOU): reference frames, time systems.
- Modern GNSS signals (L2C, L5, L1C, E5Alt-BOC).
- Multi-GNSS.
- Advanced topics in RTK Networks: single-base and network-based techniques for real-time and post-processing applications.
- Coordinate transformations between satellite-based reference frames (WGS84, ITRS, ETRS89, HTRS07) and the Greek Geodetic Reference Frame GGRS87.

Practical exercises:

• conduction and processing of measurements with single- and dual-frequency

receivers.

- Measurements using base-rover as well as using networks of permanent reference stations.
- RTK stake-out

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
USE OF INFORMATION	Use of ICT in teaching (PowerPoint presentations, videos)		
ANDCOMMUNICATIONS	• Use of an asynchronous e-learning platform (e-class).		
TECHNOLOGY	• Use of e-mail		
Use of ICT in teaching, laboratory education, communication with students	 Use of the GNSS software in 	n laboratory.	
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	52	
	study and analysis of	41	
The student's study hours for each learning	bibliography		
activity are given as well as the hours of non- directed study according to the principles of the	laboratory practice	26	
ECTS	Laboratory preparation and	31	
	essay writing		
	Course total	150	
	Assessment language: Greek (English for ERASMUS students upon request)		
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography (in Greek):

1. Φωτίου Α., Πικριδάς Χ., 2012. GPS και Γεωδαιτικές Εφαρμογές. Εκδόσεις Ζήτη, Θεσσαλονίκη.

- 2. Τσούλης Δ. , 2012, Δορυφορική Γεωδαισία. Εκδόσεις Ζήτη, Θεσσαλονίκη.
- 3. Τσούλης Δ. , 2016, Συστήματα Αναφοράς και Χρόνου. Εκδόσεις Ζήτη, Θεσσαλονίκη.

4. Δερμάνης Α., 1999. Διαστημική Γεωδαισία και Γεωδυναμική – GPS. Εκδόσεις Ζήτη, Θεσσαλονί-κη

- Suggested bibliography (in English):

 Hofmann-Wellenhof B., Lichtenegger H., Wasle E., 2008. GNSS: Global Navigation Satellite Systems – GPS, GLONASS, Galileo, and More. Springer-Verlag, Wien/New York.
 Xu G., 2007, GPS Theory, Algorithms and Applications, Springer-Verlag.
 Leick A., 2015. GPS Satellite Surveying. 4th edition, John Wiley & Sons, New Jersey.

GEO9040 – INTRODUCTION TO MACHINE LEARNING

COURSE OUTLINE: GEO9040 – INTRODUCTION TO MACHINE LEARNING

(1) GENERAL

SCHOOL	ENGINEERING				
ACADEMIC UNIT	DEPT. OF SURVEYING & GEONIFORMATICS ENGINEERING				
LEVEL OF STUDIES	Graduate – Level 7				
COURSE CODE	GEO9040 SEMESTER 9 th				
COURSE TITLE	GEO904 Introduction to Machine Learning				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, aboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS		CREDITS	
	Lectures and Labs 4(2/2) 5		5		
ΤΟΤΑΙ		TOTAL	4		5
COURSE TYPE	Skills development				
PREREQUISITE COURSES	No prerequisite courses. Suggested completion of courses Special Topics in Photogrammetry & Computer Vision, Digital Systems & Sensors, Theory of Errors & Adjustment of Observations II, Programming Techniques & Algorithms, Geographic information Management in the Web, Artificial Intelligence.				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
OFFERED TO ERASMUS STUDENTS	Can be taught in English				
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/modules/auth/opencourses.php?fc =75				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Basic purpose of this course is the familiarization of students with the topic of machine learning, namely with the processes involving a computer learning concepts without the need for direct programming/coding. It is a popular field of artificial intelligence (AI), which already finds a considerable range of applications (e.g. computer vision, speech identification/understanding, effective web search, medicine, autonomous driving).

Successful completion of this course means that students

• Have understood and can describe, analyze and compare the different categories of machine learning methods (supervised, unsupervised and reinforcement).

Are able to apply and program optimization algorithms in application examples such as price prediction as well as classification of data in classes (linear and logistic regression).
Have understood and are in position to select suitable forms of hypothesis functions

(linear, non-linear) cost functions in regression algorithms (linear and logistic), and at the same time to apply tools for avoiding overparametarization.

• Understand and can apply algorithms of binary classification or of classification in more classes.

• Are able to check and evaluate the contribution of different input variables but also to split the training data into different groups for training and validation of machine learning algorithms. They are also able to compute evaluation measures for different learning algorithms (precision, recall, f1).

• Have comprehended the operation principle of artificial neural networks and are able to train simple architectures in classification examples.

• Have understood and are in position to program clustering algorithms and apply them to image segmentation tasks.

• Have understood and are in position to apply methods and techniques for anomaly detection.

• Are able to reduce the number of variables of a machine learning algorithm by detecting via Principal Component Analysis which of these are uncorrelated.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Working independently
- Working in an interdisciplinary environment
- Production of free, creative and inductive thinking

(3) SYLLABUS

- Introduction, historic review
- Optimization methods (linear and logistic regression)
- static/dynamic regression
- regression with one and more variables
- Supervised, unsupervised and reinforcement learning
- Normalization
- Artificial neural networks (models and architectures, forward-backward propagation)
- Support Vector Machines (linear and non-linear classification)
- Clustering (k-means, DBSCAN, Gaussian)
- Dimensionality reduction (Principal Components Analysis)
- Application examples and development of machine learning algorithms.

DELIVERY	Face to face
Face-to-face, Distance learning, etc.	Face-to-face

USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY	 Support by the electronic asynchronous course platform eclass 		
Use of ICT in teaching, laboratory education, communication with students	- Use of electronic material as teaching aid (ppt slides)		
TEACHING METHODS The manner and methods of teaching are	Activity Lectures	Semester workload	
described in detail. The student's study hours for each learning	Laboratory / Exercises	26	
activity are given as well as the hours of non-	Project 48		
directed study according to the principles of the ECTS			
STUDENT PERFORMANCE EVALUATION	Language of evaluation: Greek		
Description of the evaluation procedure	Methods of Evaluation:		
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	 Written examination in the end of the semester (70%), which combines open-ended questions and numeric calculations. Evaluation of performance in the exercises (30%) 		

(5) SUGGESTED BIBLIOGRAPHY

Bishop C., 2006. Pattern Recognition and Machine Learning. Springer-Verlag New York
 Goodfellow I., Bengio Y., Courville A., Deep Learning. MIT Press

In Greek:

3. Simon H., 2010. Neural Networks and Machine Learning. Papasotiriou Editions, Athens.

4. Diamantaras K., 2007. Artificial Neural Networks. Kleidaithmos Editions, Athens.

GEO9050 – PROGRAMMING IN GEOINFORMATICS

COURSE OUTLINE: GEO9050 - PROGRAMMING IN GEOINFORMATICS

(1) GENERAL

SCHOOL	SCHOOL OF	ENGINEERING		
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN	ENGINEERING		
LEVEL OF STUDIES	Undergradu	ate - Level 7		
COURSE CODE	GEO9050		SEMESTER 9 th	
COURSE TITLE	PROGRAM	/ING IN GEOIN	IFORMATICS	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	nents of the course e awarded for the	e, e.g. lectures, whole of the	WEEKLY TEACHIN GHOURS	CREDITS
	Lectures 3			
		Lab exercises	1	
	Total 4 5			5
COURSE TYPE	Specializatio	on		
PREREQUISITE COURSES:	Informatics	& Programmin	g, Geographic Info	ormation
	Systems & So	cience		
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)			
COURSE WEBSITE (URL)	https://eclas c=75	s.uniwa.gr/mo	dules/auth/open	courses.php?f

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The course aims to present the appropriate knowledge connected to basic programming techniques applied for the development of geospatial software applications, utilizing the modern programming language of Python as well as existing geospatial data management tools. Additionally, the course presents modern approaches applied in order to manage and model both geospatial information and geospatial processing algorithms.

The course provides the theoretical knowledge required to develop software applications, either as standalone applications or in combination with existing GIS tools. Specifically, the course includes theoretical lectures and practical exercises aiming at a comprehensive understanding of modern approaches for the development of software applications in the field of Geoinformatics as well as the automation of geoprocessing algorithms, utilizing modern environments and Geographic Information Systems tools.

Based on the sections designed for the support of the course, students are getting familiar with basic elements connected to related to:

a. Object-oriented programming in Python

b. the development of applications and toolboxes for the management and processing of geospatial data

- c. the structure and function of basic geospatial data formats
- d. the modeling of geoprocessing algorithms in Geographic Information Systems

e. best practices towards the development of software tools to support applications in geospatial technology

After the successful completion of the course, students acquire a set of knowledge and skills that allow them to develop software applications to support geospatial analysis problems utilizing modern Geoinformatics tools, such as e.g. Geographic Information Systems as well as modern programming techniques. At the same time, students acquire essential skills for solving simple and complex geospatial technology problems.

Additionally, the approaches taught in the course and their practical implementation (through practical exercises) are far too important towards the preparation of dissertations in a set of different subjects which are part of the modern field of Geoinformatics (Geographic Information Systems, Photogrammetry, Remote Sensing, Cartography, Geographical Analysis, & Geodesy). Lastly, the acquired knowledge is essential for their successful integration in the industry.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Decision-making
- Working independently
- Team work
- Criticism and self-criticism
- Production of free, creative and inductive thinking

(3) SYLLABUS

Theoretical part of the Course

- 1. Introduction to Python programming:
 - Programming environment
 - Interpreters
 - Variables assignment
 - Basic commands
 - Logical operators
 - If and for loops

2. Programming in Python:

- Basic principles of object-oriented programming
- Basic data types (structures) and variables (strings, lists, arrays, tuples, & dictionaries)
- Functions
- Toolboxes utilization and development
- Geospatial data management and processing libraries
- 3. File formats for geospatial data:
 - Classification of basic data structures for geospatial data modeling
 - Vector data formats
 - Raster data formats
 - Basic compression algorithms for raster data
 - Applications programming to support different file formats in both local and web environment
- 4. Geoprocessing (modeling) in Geographic Information Systems:
 - Review of basic geoprocessing algorithms
 - Modeling geoprocessing algorithms in Geographic Information Systems
 - Introduction of available commercial software tools and free software/open source software for the development of geoprocessing models
 - Models' parametrization
- 5. Programming applications in Geoinformatics:
 - General principles of software application design in local and web environment
 - Requirements and design of software tools in Geoinformatics
 - Examples and best practices of software applications for geospatial technology problems in local and web environment

Lab Part of the Course

- Modeling geoprocessing algorithms in Geographic Information Systems utilizing vector and raster geospatial data
- Development of geospatial data processing libraries in Python language
- Literature review exercises (in both the theoretical and practical aspects of the course)

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-Face		
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Web search (literature review and data sources) Utilization of E-class UNIWA platform (file exchange among professors and students) Email 		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	39	
The student's study hours for each learning	Study and analysis of bibliography	39	
directed study according to the principles of the ECTS	Laboratory practice	35	
	Lab exercises	30	
	Educational visits	7	
	Course total	150	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Specifically-defined evaluation criteria are given, and if and where they are accessible to students.			

(5) ATTACHED BIBLIOGRAPHY

- 1. Bunting P., Clewley D. (2015). Python Scripting for Spatial Data Processing. Teaching Notes, Aberystwyth University.
- 2. Manis, G., 2015. Introduction to programming using Python (In Greek). [ebook] Athens:Hellenic Academic Libraries Link. Available Online at: http://hdl.handle.net/11419/2745
- 3. Magoutis, K., Nikolaou, C., 2015. Introduction to object-oriented programming using Python (In Greek). [ebook] Athens:Hellenic Academic Libraries Link. Available Online at: http://hdl.handle.net/11419/1708
- 4. Toms, S. (2015). ArcPy and ArcGIS–Geospatial Analysis with Python. Packt Publishing Ltd.

GEO9060 – SPECIAL CHAPTERS IN CARTOGRAPHIC DATA VISUALIZATION

COURSE OUTLINE: GEO9060 – SPECIAL CHAPTERS IN CARTOGRAPHIC DATA VISUALIZATION

(1) GENERAL

SCHOOL	SCHOOL OF	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS				
	ENGINEERIN	ENGINEERING			
LEVEL OF STUDIES	Undergradu	ate - Level 7			
COURSE CODE	GEO9060		SEMESTER	9 th	
COURSE TITLE	SPECIAL CHA VISUALIZATI	ON	TOGRAPHIC I	DATA	L .
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	onents of the course, e.g. lectures, are awarded for the whole of the TEACHIN			CREDITS	
		Lectures	3		3
	L	ab exercises	1		2
		Total	4		5
COURSE TYPE	Specializatio	n			
PREREQUISITE COURSES:	Thematic Ca	rtography			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)				
COURSE WEBSITE (URL)	https://eclas c=75	s.uniwa.gr/mo	dules/auth/o	penc	ourses.php?f

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The course aims to present methods and techniques connected to the process of cartographic data visualization using static maps, dynamic/animated maps, and maps that utilize interactive and multimedia tools. Additionally, the course introduces basic approaches and models that describe the map reading process as well as scientific methods towards the practical evaluation of the efficiency of modern cartographic products.

This course combines the theoretical knowledge required for the visualization of geospatial entities using classical and modern approaches, with the practical implementation of cartographic products using modern digital media and tools. At the same time, the analysis of perceptual and cognitive issues related to the process of map reading in combination with the acquisition of knowledge for the practical evaluation of cartographic products provides the possibility of a comprehensive understanding of the best practices referred to the process of cartographic visualization. The course includes both theoretical lectures and

practical exercises aiming at to a smooth transition from theoretical concepts to the practical implementation of modern and integrated cartographic products. Given the immediate need to visualize the large amount of data collected today (using multiple techniques), the acquired knowledge includes all the necessary supplies requires in the modern industry, while it is in line with the appropriate utilization of the available digital tools.

Based on the sections designed for the support of the course, students are getting familiar with basic elements connected to related to:

- a. the basic principles for cartographic visualization using static maps,
- b. specialized methods of cartographic visualization,
- c. the basic principles for cartographic visualization using dynamic/animated maps,
- d. the basic principles for cartographic visualization using multimedia maps;
- e. the basic concepts related to map reading and usability of cartographic products,
- g. the practical methods for modern cartographic products evaluation.

After the successful completion of the course, students acquire a set of knowledge and skills that allow them:

a. to classify and visualize cartographic data using modern methodological approaches and tools.

b. to understand the nature of spatial entities by selecting and implementing alternative cartographic visualization techniques using digital and interactive software tools.

c. to develop and organize research studies towards the evaluation of the efficiency of existing or future cartographic products to support professional, educational and research purposes.

Additionally, both the theoretical approaches taught in the course and the complete familiarization of students with the corresponding technological tools and modern evaluation tools constitute an important point towards the elaboration of diploma theses in the field of Cartography and Geographic Information Systems.

The specialized knowledge and skills acquired by the students in the course do not lead to a strictly theoretical training, but through a knowledgeable and accessible to the average student in the 7th level of complexity of the subjects raised, they come faced with issues to be addressed in the industry. Additionally, in combination with the subject of Geographical Information Science, students acquire all the educational supplies and skills required for the next (8th) cycle of studies.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Decision-making
- Working independently
- Team work
- Criticism and self-criticism
- Production of free, creative and inductive thinking

(3) SYLLABUS

Theoretical part of the Course

- 1. Basic principles of static mapping:
 - Spatial data models
 - Data measurement scales
 - Visual variables in cartographic visualization
 - Traditional methods for both qualitative and quantitative differences mapping
 - Specialized methods for cartographic data visualization
 - Basic applications of static maps
- 2. Basic principles of dynamic/animated mapping:
 - Visualizing temporal changes
 - Dynamic variables of cartographic symbolization
 - Types of animated maps
 - Dynamic maps and user interaction
 - Software tools for dynamic and animated mapping
 - Basic applications of dynamic/animated maps
- 3. Cartographic data visualization using multimedia maps:
 - Sound variables of cartographic symbolization
 - Interactivity and navigation in digital and multimedia maps
 - Layout in digital and multimedia mapping
 - Software tools for multimedia maps
 - Basic applications of multimedia maps
- 4. Perceptual and cognitive issues in map reading process:
 - Basic concepts of visual perception and attention on maps
 - Theories-models of cartographic communication
 - The role of color in cartographic design
- 5. Map evaluation methods
 - Efficiency of cartographic symbolization variables
 - Users and usability issues in maps
 - Qualitative methods for map evaluation
 - Quantitative methods for map evaluation

Lab Part of the Course

- Cartographic visualization using dynamic-animated maps
- Cartographic visualization using multimedia maps
- Literature review exercises (in both the theoretical and practical aspects of the course)

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-Face		
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Web search (literature review and data sources) Utilization of E-class UNIWA platform (file exchange among professors and students) Email 		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	39	
The student's study hours for each learning	Study and analysis of	30	
activity are given as well as the hours of non- directed study according to the principles of the	bibliography		
ECTS	Laboratory practice	35	
	Lab exercises	13	
	Educational visits	8	
	Course total	125	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure	Language of evaluation: Gre Methods of evaluation:	ek	
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	White chain at the cha of the semester		

(5) ATTACHED BIBLIOGRAPHY

- 1. Katsion I., & Tsatsaris A. (2014). Thematic Cartography Lectures (In Greek), Thessaloniki, Disigma Eds.
- Tsoulos, L., Skopeliti, A., & Stamou, L. (2015). Cartographic composition and production in digital environment (In Greek). [ebook] Athens:Hellenic Academic Libraries Link. Available Online at: http://hdl.handle.net/11419/2506.

- 3. Dent B.D., Torguson J.S. & Hodler T.W., 2009, Cartography. Thematic Map Design (6th ed.). New York: McGraw-Hill.
- 4. Kraak M.J. & Ormeling F., (2003), Cartography: Visualization of Geospatial Data (2nd ed.), Prentice Hall, London.
- 5. MacEachren A.M., (1995), How Maps Work: Representation, Visualization, and Design. The Guilford Press. New York.
- 6. Peterson M.P., (1995), Interactive and Animated Cartography, Prentice Hall, London.
- 7. Robinson A.H., Morrison J.L., Muehrcke P.C., Kimerling A.J. & Guptill S.C., 2002, Elements of Cartography (In Greek) (Kavouras M., Nakos B., Tsoulos L., Filippakopopoulou V & Tomai E. Transl.). Zographos: University Press N.T.U.A.
- 8. Slocum T.A., McMaster R.B., Kessler F.C., Howard H.H., (2009), Thematic Cartography and Geovisualization (3rd ed.), Prentice Hall, London.

GEO9070 – OPEN CHANNEL HYDRAULICS AND RIVER ENGINEERING

COURSE OUTLINE: GEO9070 - OPEN CHANNEL HYDRAULICS AND RIVER ENGINEERING

(1) GENERAL

SCHOOL				
	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN	IG		
LEVEL OF STUDIES	Undergradu	ate		
COURSE CODE	GEO 9070		SEMESTER 9 th	
COURSE TITLE	OPEN CHAN	NEL HYDRAULI	CS AND RIVER EN	IGINEERING
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	are awarded for the whole of the WEEKLY CREDIT			CREDITS
	Lectures 3			
	Lab exercises 1			
	Total 4 5			
COURSE TYPE	Special back	ground		
PREREQUISITE COURSES:	URBAN HYDRAULIC WORKS, GEO 404			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)			
COURSE WEBSITE (URL)				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Upon successful completion of the course the students will:

1. Understand the peculiarities of flow in open channels and natural streams and will be able to classify flows (steady - unsteady, uniform - non-uniform, gradually - rapidly varying), understand the phenomenon of hydraulic jump and identify the curves of non-uniform gradually varying flow and the method of calculating the backwater curve, know the basic characteristics of sediment transport in rivers and the environmental impact of engineering works.

2. Understand the role and function of basic hydraulic structures such as spillways, weirs and sluice gates.

3. Be familiar with the legislation concerning river engineering works including channelization.

- 4. Be able to do hydraulic calculations in simple cases of steady flow.
- 5. Be able to use HEC-RAS (River Analysis System) software for river analysis studies.
- 6. Be able to collaborate with their fellow students for undertaking relevant projects.

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Project design and management
- Working independently
- Team work

(3) SYLLABUS

1. Introduction - Subject. Basic equations of steady flow. Critical flow theory overview. Applications.

Uniform flow. Hydraulic design for uniform flow. Most efficient hydraulic cross section.
 Non-uniform gradually varying flow. Classification of curves. Qualitative analysis, control sections. Backwater curve. Quantitative analysis- estimation of free surface in artificial and natural channels.

4. Hydraulic jump. Properties and jump control. Energy destruction. Stilling basins and weir with free overflow.

5. Rapidly varying flow. Thin-plate and broad-crested weirs. Side weirs. Dam spillways. Stepped spillways. Sluice gates.

6. Unsteady Flow: Gradually varying flow. St. Venant equations. Kinematic wave. Rapidly varying flow. Flood routing. Hydrological methods (Muskingum).

7. Sediment transport: Initiation of sediment motion, riverbed formations, bedload and suspended load. Measurement methods - estimation.

8. River channelization. Bridge scour. The HEC-RAS (River Analysis System) code. Presentation and applications.

9. River engineering works: legislation and applications.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face and e-class (for the practical exercise).		
	Specialized Software (MATLA		
ANDCOMMUNICATIONS	Learning process support three	ough the electronic platform	
TECHNOLOGY	e-class, use of PowerPoint presentations.		
Use of ICT in teaching, laboratory education, communication with students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	29	
	Laboratory practice	29	
The student's study hours for each learning	Individual assignments	23	
activity are given as well as the hours of non- directed study according to the principles of the	Laboratory Teamwork	36	
ECTS	Standalone study	23	
	Course total	150	

Description of the qualitation and codume	Theory • Final exam, 70% • Practical exercises, 30%
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- 1. HYDRAULICS, Daugerty Franzini. Publisher Fountas
- 2. Elements of Physical Hydrology, G. Hornberger et al., Translated in Greek by S.H. Karalis, Publisher DISIGMA, 2019.

- Related academic journals:

- 3. Journal of Hydraulic Engineering, American Society of Civil Engineers
- 4. Water Science and Technology, IWA Publishing
- 5. HYDROTECHNICA, Journal of the Hellenic Hydrotechnical Association.

GEO9080 – TRAFFIC FLOW AND TRAFFIC MANAGEMENT COURSE OUTLINE: GEO9080 - TRAFFIC FLOW AND TRAFFIC MANAGEMENT

(1) GENERAL

SCHOOL	SCHOOL OF	ENGINEERING		
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS ENGINEERING			
LEVEL OF STUDIES	Undergradu	ate		
COURSE CODE	GEO9080		SEMESTER	9 th
COURSE TITLE	Flow and Tr	affic Managem	ient	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	onents of the course, e.g. lectures, are awarded for the whole of the WEEKLY CREE		CREDITS	
Lectures & Individual Exercise (1	heoretical par	t of the Course)	2	
Group Exe	ercise (Lab Par	t of the Course)	2	
	Total		4	5
COURSE TYPE	Specializatio	n		
PREREQUISITE COURSES:	No			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:				
IS THE COURSE OFFERED TO ERASMUS STUDENTS				
COURSE WEBSITE (URL)	New course			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

After the successful completions of the course, students will be able to:

- Know the basic concepts and parameters of traffic flow and traffic management
- Realize the physical importance of traffic, how to count traffic volumes and traffic management measures
- Understand the importance of analytical and statistical approaches to the analysis of traffic flow in conditions of uninterrupted flow
- Develop basic macroscopic models of traffic analysis
- Calculate using models the traffic capacity and the level of service of a road section

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

After the successful completions of the course, students acquire the following knowledge and skills:

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adaptation to new situations
- Decision making
- Autonomous work
- Team Work
- Production of free, creative and inductive thinking

(3) SYLLABUS

Theoretical part of the Course

Traffic Flow

- Definitions and characteristics of traffic parameters
- Traffic volume variability
- Traffic Composition and Traffic Volume Charts
- Fundamental traffic flow relationship and fundamental diagrams
- Macroscopic traffic flow patterns
- Traffic Capacity and Level of Service (LoS)
- Methods and technologies of traffic observations and data collection

Traffic Management

- Vehicle Flow Management
- Traffic Restrictions,
- Reduction of trips during Peak-Hour,
- Prioritizing Public Transportation Means,
- Traffic for Pedestrians, Bicyclists

Practical Part of the Course

Students (in groups of 3-4) conduct traffic counts and vehicle conflicts at predetermined intersections on a central urban highway in Athens. Based on the counts, the first task concerns the analysis of counts and traffic conflicts diagrams and the second the identification of high-risk sites.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-Face				
	 Lectures - interactive teac 	hing in the classroom			
	• Encouraging students to at	ttend related Workshops,			
	Conferences, etc.				
USE OF INFORMATION	Presentations in the black	board			
ANDCOMMUNICATIONS	Presentations through Pov	ver Point slides			
TECHNOLOGY	_				
Use of ICT in teaching, laboratory education, communication with students					
TEACHING	Activity	Semester workload			
METHODS	Lectures	52 (13 X 4)			
The manner and methods of teaching are described in detail.	Students create groups of 4	60			
The student's study hours for each learning	students and conduct traffic				
	measurements at				
directed study according to the principles of the	predetermined locations in				
ECTS	central nodes of the Athens				
	area. Based on the				
	measurements, they solve 2				
	different tasks related to				
	statistical standardization and				
	calculation of traffic volumes.				
	Study and preparation for the	38			
	exams				
	Course total	150			
STUDENT PERFORMANCE	Language of evaluation: Gre	ek			
EVALUATION					
Description of the evaluation procedure	Theoretical part of the Course				
	Written exam (70%)				
Specifically-defined evaluation criteria are					
given, and if and where they are accessible to	Lab Part of the Course				
students.	Delivery of individual	exercises and oral			
	examination (30%)				

(5) ATTACHED BIBLIOGRAPHY

- 1. "Book: "Traffic Management", J. Frantzeskakis M. Pitsiava-Latiopoulou, D. Tsampoulas, 2008.
- 2. Daganzo C. F., (1997). "Fundamentals of transportation and traffic operations." Pergamon, ISBN 0-08-042785-5.
- 3. Hall F. D., (1994), Traffic Stream Characteristics, Monograph on Traffic Flow Theory Institute of Transportation Engineers (ITE) (1993).Traffic Engineering Handbook. Editor Pline, J. L., Prentice Hall, Englewood Cliffs, N. J., 07632, ISBN 0139267913.
- 4. May, A. D. (1990). Traffic Flow Fundamentals. Prentice-Hall Englewood
- 5. Roess, R. P., Prassas, E. S., McShane W. R. (2011). Traffic Engineering (4th Edition). Prentice Hall, Englewood Cliffs, N. J., 07632, ISBN 0139261486.
- 6. Salter R. J. Housell N. B. (1996). Highway Traffic Analysis and Design 3rd edition Palgrave McMillan, ISBN.

GEO9090 – OCEANOGRAPHY AND HYDROGRAPHY

COURSE OUTLINE: GEO9090 - OCEANOGRAPHY AND HYDROGRAPHY

(1) GENERAL

SCHOOL	ENGINEERING			
DEPARTMENT	SURVEYING AND GEOINFORMATICS ENGINEERING			
LEVEL OF STUDIES	Undergradu	ate – Level 7		
COURSE CODE	GEO9090	SEMESTER	OF STUDIES	9th
COURSE TITLE	OCEANOGR	APHY AND HY	DROGRAPHY	
INDEPENDENT TEACHI in case the credits are awarded in discrete p Laboratory Exercises, etc. If the credits are awar enter the weekly teaching hours	parts of the course e.g. Lectures, arded uniformly for the entire course, HOURS UNITS			••••••
		Lectures	2	4
	Laborat	tory Exercises	1	1
	TOTALS 3 5			5
TYPE OF COURSE	ELECTIVE COURSE FOR SPECIALIZATION IN GEODESY			IN GEODESY
PREREQUISITE COURSES:	No prerequisite courses			
C.LAUSSA OF TEACHING AND EXAMINATIONS:	Greek			
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES (English)			
ONLINE COURSE PAGE(URL)	https://ecla	ss.uniwa.gr/cc	ourses/GEO90	9/

(2) LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course are described, the specific knowledge, skills and abilities of an appropriate level that students will acquire after the successful completion of the course.

The aim of the course is for students to acquire the basic knowledge in:

(a) Physical Oceanography (environmental factors salinity-temperature-pressure, ocean geomorphology, marine circulation, wave mechanics)

(b) Principles of sound propagation in water, sound systems and modern methods and specifications of hydrographic mapping and delineating infrastructure facilities for marine and coastal areas

(c) marine data in operational form (forecasts, historical measurements).

As part of the course, a demonstration of measuring marine instruments and the presentation of research projects of the Hellenic Centre for Marine Research (HCMR) with a visit to Anavyssos, Attica, are included. The knowledge that students are going to acquire at theoretical and laboratory level is put into practice for coastal and marine studies (Topographical, Port, Hydraulic) and technical works.

After the end of the course, students will have understood the basic concepts and principles

of Physical Oceanography (Descriptive and Dynamic), and the collection/ processing and visualization of hydrographic field measurements in the riverine, coastal and marine environment.

General Competencies

Taking into account the general skills that the graduate must have acquired (as these are listed in the Diploma Supplement and listed below) which / which of them is the subject of the course intended for?.

- Search, analysis and synthesis of data and information, using the necessary technologies and software
- Adaptation to new situations
- Decision-making
- Autonomous work
- Teamwork
- Criticism and self-criticism
- Promoting free, creative and inductive thinking

(3) COURSE CONTENT

Theoretical Part of the Course

A. PHYSICAL OCEANOGRAPHY

- Introduction to the physical parameters and properties of seawater. (Salinity, temperature, density, water types and sea water masses)
- Ocean geomorphology and deep zones
- Mixing of water masses. Quality, color and transparency of seawater
- Maritime traffic Equations of movement and conservation
- Currents and operative causes of their creation: Density currents, windgenic, geostropic/baroclinical, inertial, tidal. Currents in absence of friction, shallow ocean, Currents in the presence of friction (Wind circulation, Ekman theory, Sverdrup theory, intensification of flow at the western boundary of oces)
- Thermohaline circulation (semi-operation of water masses in the ocean, global thermosallic belt)
- Surface and long waves; waves in the absent and in the presence of Earth's rotation. Tides. (forces, main characteristics and action of ocean topography)
- Propagation of ripples from deep water to the shore. Rifting, refraction, drizzle, reflection and breakage of ripples
- The dynamic circulation of the Mediterranean Sea and the Greek Seas (Aegean, Ionian, Levantine)
- Methods of observation and forecasting of maritime traffic, tidal graphs, instruments and methods for measuring physical parameters at sea
- Numerical models and operational physical oceanography.

B. HYDROGRAPHY.

- Single- and multi-beam echosounding systems
- Methods, instrument calibration and errors of hydrographic data

- Use of Scanners, Lidar, drones, infrared sensors, radar and satellite altimetry in hydrographic mappings
- Modern methods of surveying and installing coastal and offshore works (telecommunications cables, pipelines, wind turbines, gas/oil extraction platforms), and shoreline changes from natural and man-made causes
- Oceanographic databases
- The Copernicus Marine and EMODnet hydrographic data platforms
- Software EIVA, Qinsy processing and performance of hydrographic measurements.
- The territorial sea (definition and engraving), EEZ (Exclusive Economic Zone) and related legislation.

Laboratory Part of the Course

- Calibration of a echosound system
- Processing and interpretation of hydrographic data
- Combine satellite data with field measurements
- Shoreline extraction methods
- Study of the formation and engraving of the seashore

(4) TEACHING AND LEARNING METHODS - EVALUATION

METHOD OF DELIVERY	In the hall		
USE OF INFORMATION AND	Use of the Internet (searching)	ch for bibliographic	
COMMUNICATION	information and sources of digital geographic data		
TECHNOLOGIES Use of	and Web-GIS applications)		
TEIs in Teaching, Laboratory Education, Communication with students	 Use of the "open e-class" platform of the University of West Attica (exchange of course data and digital data between teachers and students) 		
	 Use email 		
	 Use of specialized remote 	e sensing software	
	 Use of specialized design 	software	
	 Use of presentation software 	vare	
TEACHING ORGANIZATION	Activity Semester Workload		
The way and methods of teaching are described in detail.	Lectures	70	
The student's study hours for each learning activity are listed, as well as the hours of a non-	Study & analysis of 40 bibliography		
guided study according to the principles of ECTS	Laboratory exercises	35	
	Educational visits	5	
	Total Course	150	
STUDENT EVALUATION	Language of the examinatio	n: Greek (English if needed,	
Description of the evaluation process	e.g., Erasmus+students)		
Explicitly defined assessment criteria are mentioned and if and where they are accessible to students.	Written examination at at (Multiplechoice developmentalquestions, project	questions and	

(5) RECOMMENDED -BIBLIOGRAPHY

Greek:

- 1. Albanakis, K. (1999). Courses in Oceanography. University Studio Press, Thessaloniki.
- 2. <u>Giannakidis, A. (2004)</u>. Issue of notes "Introduction to Oceanography", Technical University of Crete, Department of Electronic and Computer Engineering
- 3. Zervakis V. (2007). <u>Introduction to Dynamic Oceanography</u>, Course Teaching Notes, University of the Aegean.
- 4. Zafeiropoulos, I. (1998). Oceanography. Translated into Greek from the book "American PracticalNavigation" Vol. I, Part 6, Oceanography-Pub. No 9, EugenidesFoundation.
- 5. Kapsimali V. and K. Pavlopoulos. (2009). <u>Vithometry and maps</u>, Course teachingnotes, Harokopio University.
- 6. Koutitas, C. (1996). Introduction to coastal engineering and port works. Ziti Publications.
- 7. <u>Sukisian, T. Oceania circulation and the phenomenon El Niño</u>, HCMR.

English:

- 1. Barale V. and Gade M. (2008). Remote sensing of the European seas, Springer.
- 2. Maul G.A. (2012). Introduction to satellite oceanography. Springer Science & Business Media 606pp
- 3. Mellor, G.L. (1996). Introduction to Physical Oceanography. Princeton Unicersity.
- 4. Niedzielski Tomasz (2015). Satellite Technologies in Geoinformation Science. Birkhäuser Basel Springer Basel 310pp
- 5. Pickard, G.L. and W.J. Emery. (1990). Descriptive Physical Oceanography. An introduction. Pergammon Press.
- 6. Pinet, R. Paul. (2009). "Invitation to Oceanography", chapter <u>The Growth of</u> <u>Oceanography</u>. Jones and Bartlett Publishers.
- 7. Practical Navigation" Vol. I, Part 6, Oceanography-Pub. No 9, Eugenides Foundation, Higher Public Schools of merchant navy, Navy Library, Athens.
- 8. Robinson, Ian S (2010). Discovering the Ocean from Space. Springer-Verlag Berlin Heidelberg 638pp
- 9. Stewart R. H. (2008). <u>Introduction to Physical Oceanography</u>. Department of Oceanography, Texas A&M University.
- 10. Stewart, R. H. (2009)." Our Ocean Planet Oceanography in the 21st Century".
- 11. Summerbayes, C.P. and S.A. Thorpe. (1996). Oceanography, An Illustrated Guide. Manson Publishing.
- 12. Thurman, H.V. (1997). Introductory Oceanography. Pentice-Hall.

GEO9100 – EARLY WARNING SYSTEMS & NATURAL DISASTER MANAGEMENT

COURSE OUTLINE: GEO9110 - EARLY WARNING SYSTEMS & NATURAL DISASTER MANAGEMENT

(1) **GENERAL**

SCHOOL	ENGINEERING			
ACADEMIC UNIT	SURVEYING	SURVEYING AND GEOINFORMATICS ENGINEERING		
LEVEL OF STUDIES	UNDERGRA	DUATE		
COURSE CODE	GEO9110		SEMESTER 9 th	
COURSE TITLE	Early Warn	ng Systems &	Natural Disaster	Management
INDEPENDENT TEACHI if credits are awarded for separate compo- laboratory exercises, etc. If the credits ar course, give the weekly teaching he	nents of the course, e.g. lectures, e awarded for the whole of the TEACHIN CREE			CREDITS
		4		
LABORATO	DRY EXERCISES - FIELDWORK 1 1			
	TOTAL 4 5			
COURSE TYPE	Skills development			
PREREQUISITE COURSES:	No			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	GREEK (English for Erasmus Students)			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES (ENGLISH)			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/GEO194/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Upon successful completion of the course, students are expected to:

- recognize the type, the importance but also the possibility of a natural disaster
- Demonstrate knowledge and critical understanding of the basic methods and techniques of data collection for use in integrated early warning information systems.
- Develop methods to generate forecasts and estimate their application limits.
- Support decision-making in working groups of Civil Protection bodies
- Establish procedures for control, evaluation and validation of early warning methods
- produce complete early warning systems solutions
- Have the ability to manage risk in natural disaster events
- apply cutting-edge technologies and research tools in disaster management
- Evaluate (using studies and estimates) the effects of natural disaster

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search, analyze and synthesize data and information, using both necessary technologies
- Project planning & management
- Autonomous work in an interdisciplinary environment
- Promotion of free, creative and inductive thinking
- Decision making
- Time management Working with deadlines

(3) SYLLABUS

- Introduction to Risk Analysis & Management (Risk, Vulnerability, Risk. Disaster Management Cycle, Risk Perception and Assessment, Crisis Management and Emergencies)
- Geodynamic Hazards (Landslides: Types, causes & treatment of landslides, Earthquakes: Causes and Distribution of Earthquakes, Accompanying Seismic Phenomena, Volcanoes: Description, Distribution and Classification of Volcanoes, Volcanic Activity)
- Hydrometeorological Disasters (Climate Change: Causes of the Greenhouse Effect, Impacts of Climate Change, Extreme Weather Phenomena and Expected Natural Resources Disasters: Tornado, Heat, Storms, Floods, Extreme Rainfall, Frost)
- Forest fires (phenomenon description, causes, disaster distribution zones, management stages, actions, interventions and actions for each stage, national and international management framework)
- Detection of precursors (Introduction to precursors, physicochemical processes and occurrence of natural disasters, validity and confidence intervals, use of historical records, retrieval of information from time series)
- Early warning systems and methodologies (measurement sensors, interconnected systems, field installations, real-time logging, with short- and long-term forecasting methodologies, sensor network pattern recognition, cost-tracking analysis & monitoring system, monitoring system, crowdfunding & crowd tracking systems)
- Real-time decision-making methods (Introduction to Decision Theory, Probability of Error, Satisfaction of Constraints, Rivalry, Decision-Making Phases, Decision Support Information Systems, Management Support Systems)
- Disaster modeling (evolution models and disaster simulation software applications)
- Disaster & Crisis Management (Introductory Concepts, Disaster and Crisis Management Systems. The role of information in crisis management. The role of Coordination Business Centers. Crisis Management Systems, Emergency Planning, Rehabilitation and Reconstruction. Project failures, Training and preparation citizenship. Development of crisis management skills. Crisis Management, Political Disaster Risk Reductions)
- Economic & Social Impacts of Disasters (Injuries, Deaths and Damages, Depending on the Type of Disaster, Psychological Impact, Demographic Impact political implications, destabilization. Indirect financial losses, Feasibility study of infrastructure rehabilitation programs.)
- Management of media internet social networks in natural disasters (Request for information, Time pressure conditions and the dramatic nature of events, risks of

slipping from objective and valid information. Requirements of the public and authorities, appropriate way of providing information at the site of Disaster, kind, quantity and quality of information. Social Media: modes of operation, techniques of transmitting accurate, reliable and vital information, eliminating false news)

• Risk Management & Business Planning (Introduction, Basic Risk Management Principles: Immediate Response, Human Factor Priority, Leader Position, Information. Reasons for Failure to Disaster Management, Coordination and Event Management. removal of citizens)

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc. USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	 Face-to-face Practical training in ICT lab Use of ICT in teaching (PowerPoint presentations, videos) Use of an asynchronous e-learning platform (e-class). Use of messaging and social media as additional communication channels 		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are			
described in detail.	Lectures	39	
The student's study hours for each learning activity are given as well as the hours of non-		30	
directed study according to the principles of the	of bibliography	12	
ECTS	Lab practice	13	
	Laboratory preparation and	35	
	essay writing	22	
	Project 33		
	Course total 150		
STUDENT PERFORMANCE EVALUATION	Assessment language: Greek (English for ERASMUS		
Description of the evaluation procedure	students upon request)		
	Performance evaluation met	hod:	
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.			
	The evaluation criteria have been presented to the students before the final examination. Students can see their evaluation upon request and receive clarifications on their grades.		

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography (in Greek):

1. Λεκκας, Ε. Φυσικές και Τεχνολογικές Καταστροφές,Λεκκας, Ε, Αθηνα, (2000)

2. Σαπουντζάκη, Κ., Δανδουλάκη, Μ., Κίνδυνοι & καταστροφές, Καλλιπος, 2015

3. Διονυσιαδης, Σ., Εγχειρίδιο αντιμετώπισης εκτάκτων περιστατικών και καταστροφών, εκδόσεις Ιων, Αθήνα (1997)

4. Βοργε, Δ., Το βιβλιο του κινδύνου, εκδόσεις Παπαζήση, αθήνα, (2008)

- Suggested bibliography (in English):

1. Bartlett, D., Singh, R., Exploring Natural Hazards: A Case Study Approach, CRC Press, UK, (2018)

2. Zschau, J., Küppers, A.N., Early Warning Systems for Natural Disaster Reduction, Springer, New York, (2003)

3. Golnaragi, M., Institutional Partnerships in Multi-Hazard Early Warning Systems, Springer, New York, (2012)

GEO9110 – REFERENCE SYSTEMS AND TIME

COURSE OUTLINE: GEO9110 - REFERENCE SYSTEMS AND TIME

(1) GENERAL

SCHOOL	ENGINEERING			
ACADEMIC UNIT	SURVEYING AND GEOINFORMATICS ENGINEERING			
LEVEL OF STUDIES		UNDERGRADUATE		
COURSE CODE	GEO9110	-	SEMESTER 9 th	
COURSE TITLE	REFERENCE	SYSTEMS AND	TIME	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are awar the weekly teaching hours ar	nents of the course, e.g. lectures, arded for the whole of the course, give TEACHIN CREDITS		CREDITS	
	Lectures 2 4			
	Labora	atory exersices	1	1
	TOTAL 3 5			5
COURSE TYPE general background, special background, specialised general knowledge, skills development	Specialized §	general		
PREREQUISITE COURSES:	No prerequisite courses needed			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes (English)			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr /courses/GEO213			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Basic course goals:

- Use of recent satellite observations in earth system modelling
- Connection of physical and geometrical characteristics of the Earth system
- Basic concepts on satellite orbits and their applications to earth system monitoring
- Mathematical models of positioning using satellite data
- Satellite data contribution in recent geodetic problems
- New technology applications in geodetic science

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information,
- with the use of the necessary technology
- Decision-making
- Working independently
- Working in an international environment
- Production of new research ideas
- Production of free, creative and inductive thinking

(3) SYLLABUS

Satellite orbits. No-Disturbing satellite orbit. Geometrical issues of orbits. Kepler equation. Keplerian elements. Satellite position and velocity vector. No-disturbing orbit computations. Disturbing orbit. Kaula theory. Hill equations. Satellite positioning using electromagnetic measurements. GNSS. Satellite Laser Ranging. Lunar Laser Ranging. Satellite – to – Satellite tracking. CHAMP satellite. GRACE satellites. Time variant gravity field. Gravity gradiometry. GOCE satellite gravity mission. Earth Tides. Numerical integration of satellite orbit. Satellite altimetry. Altimetric satellites. Error budget. DORIS orbit determination system.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY.	Face-to-face			
USE OF INFORMATION	e-class, software development, communication with			
ANDCOMMUNICATIONS	students through e-class			
TECHNOLOGY				
Use of ICT in teaching, laboratory education, communication with students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	52		
The student's study hours for each learning	Laboratory practice	58		
	Study and analysis of	40		
directed study according to the principles of the ECTS	bibliography			
	Course total 150			
Description of the second or the second or second	IN The final course evaluation is based on written examination (70%) and laboratory work (30%)			
given and if and where they are accessible to	Language of evaluation: Greek (English if needed, e.g., Erasmus+ students)			
	Written examination with short-answer questions, problem solving and laboratory work			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Beutler G. (2005) Methods of Celestial Mechanics, Vols I and II. Springer.
- Heiskanen W. A., Moritz H., 1967. Physical Geodesy. Freeman & Co, San Francisco.
- Hofmann-Wellenhof B. and H. Moritz. 2005. Physical Geodesy. Springer eds.
- Kaula, W.M. (1966) Theory of Satellite Geodesy. Blaisdel Publishing Company.
- Seeber, G. (2003) Satellite Geodesy (2nd Edition). Walter de Gruyter eds.
- Torge W., 2001. Geodesy. 3rd Edition. Walter de Gruyter, Berlin.
- Vanicek P., Krakiwsky E., 1992. Geodesy: The Concepts. Elsevier, New York.

- Related academic journals:

- Journal of Geodesy
- Journal of Geodetic Sciences
- IAG Series publications

GEO9120 – COASTAL AREAS & MARINE SPATIAL PLANNING

COURSE OUTLINE: GEO9120 - COASTAL AREAS & MARINE SPATIAL PLANNING

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS ENGINEERING			
LEVEL OF STUDIES	Undergradu	ate		
COURSE CODE	GEO9120		SEMESTER 9 th	
COURSE TITLE	COASTAL A	REAS & MARIN	E SPATIAL PLAN	NING
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	re awarded for the whole of the WEEKLY CREDITS			CREDITS
	Lectures 3			
	Lab exercises (essay) 1			
	TOTAL 4 5			
COURSE TYPE	specialised general knowledge			
PREREQUISITE COURSES:	 Preferred prerequisite knowledge: GEO_705: Spatial Planning & Regional Development			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes, to English speaking.			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/TOP175/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The aim of the course is the spatial approach of both, the coastal zone and the marine environment.

Upon successful completion of the course, students will be able to:

- o ... know the geomorphology and other abiotic parameters of the areas under study.
- o ... understand related policies and legislation for governing areas under study.
- o ... collect/process spatial data from coastal/marine areas and have the skill to compile relevant spatial databases.
- o ... be aware of good practices concerning coastal and marine space management and apply them appropriately.
- o ... be informed about current maritime spatial events, worldwide.
- o ... participate in multidisciplinary study groups, in the framework of integrated coastal and marine management projects.

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Upon successful completion of the course, students are expected to acquire the following General Abilities:

o Search for, analysis and synthesis of data and information, with the use of the necessary technology

o Team work

o Working in an interdisciplinary environment

o Project planning and management

o Respect for the natural environment

o Production of free, creative and inductive thinking

(3) SYLLABUS

- 1. Introductory concepts and definitions for coastal areas and maritime space. The special case of rivers and lakes. Abiotic features.
- 2. Coastline and cross section of coastal areas. Geological components.
- 3. The marine environment and its properties.
- 4. Environmental, geopolitical and economic parameters. Natural and man-made environment in coastal areas and marine space. The concept of anthropogenic intensity.
- 5. Land uses and spatial indicators. Bearing capacity issues.
- 6. Integrated management of coastal areas. Methodology; historical background and events.
- 7. Marine spatial planning. Methodology; historical background and events.
- 8. U. N. Convention on the Law of the Sea.
- 9. Related institutional framework in Greece, in Europe (EU) and worldwide. Stakeholders; international events.
- 10. Greek policies-plans for the coastal and maritime space; planning levels and administrative structures.
- 11. Data collection tools & related spatial databases; cases studies.
- 12. Professional perspectives for surveyors/geoinformatics engineers.

Laboratory exercises focus on:

- Familiarity with the geometric/geomorphological characteristics of the examined areas.
- Spatial approach, with the use of indicators, at local and regional level.
- Structure of a relevant project.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Lectures - interactive teaching face to face (distance learning, if obligatory).			
USE OF INFORMATION	o Teaching using electronic			
ANDCOMMUNICATIONS TECHNOLOGY	o Use of CAD and GIS softw			
Use of ICT in teaching, laboratory education, communication with students	university asynchronous ec	port of learning process with lucation platform.		
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are described in detail.	Lectures	39		
	Lab exercises (essay)	13		
The student's study hours for each learning	Homework	48		
activity are given as well as the hours of non- directed study according to the principles of the	Self-studying	50		
ECTS	Course total 150			
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure	Language of Assessment: Greek (English if needed).			
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Substitution with an sman projectly, arter succession			
	o Examination and public support of lab exercises (essay). (max 50%)			

(5) ATTACHED BIBLIOGRAPHY

- 1. Wassenhoven, L. K. (2017), 'Marine Spatial Planning'. Heraklion: University of Crete Publications. [in Greek].
- 2. Clark, J. R. (1996), 'Coastal zone management handbook', CRC Press, Boca Raton USA.
- 3. Ehler Charles & Fanny Douvere (2009), 'Marine spatial planning: A step-by-step approach towards ecosystem-based management', UNESCO / IOC, Paris.
- 4. Κιουσόπουλος, Γιάννης, (2008), 'Appraisal of man-made interventions along the Hellenic coastal areas [AMICA]'. Athens: New Technologies. [bilingual].
- Kiousopoulos, John, 2010. 'Anthropogenic Intensity' and 'Coastality': Two new Spatial Indicators for Exploring and Monitoring the Coastal Areas in the framework of Environmental Management. ___ In: Santosh Kumar Sarkar (ed.), 2010, "Environmental Management", pp. 217-240. Sciyo.
- 6. Kyvelou, Stella, (ed.), (2016), 'Maritime dimension of territorial cohesion Maritime spatial planning Sustainable blue development', Kritiki ed. [in Greek].
- 7. o Serraos K. & D. Melissas, (2018), 'Marine Spatial Planning', Sakkoulas Publications. [in Greek].
- 8. o Valiela Ivan (2006), "Global coastal change", Blackwell, UK.

GEO9130 – SPATIAL DATA ADVANCED ANALYSIS METHODS

COURSE OUTLINE: GEO9130 - SPATIAL DATA ADVANCED ANALYSIS METHODS

(1) GENERAL

SCHOOL	L SCHOOL OF ENGINEERING			
	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERING			
LEVEL OF STUDIES	Undergradua	ate-level 7		
COURSE CODE	GEO9130		SEMESTER	9 th
COURSE TITLE	SPATIAL DAT	TA ADVANCED	ANALYSIS METH	ODS
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	onents of the course, e.g. lectures, are awarded for the whole of the CREDITS			CREDITS
	Lectures 3 4			
	1 1			
	Lab exercises			
	Total 4 5			
COURSE TYPE	skills development			
PREREQUISITE COURSES:	Spatial Analysis			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:				
IS THE COURSE OFFERED TO ERASMUS STUDENTS				
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/GEO234/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The course aims to familiarize students with geospatial data advanced analysis methods of both Statistics and Informatics.

After the successful completions of the course, students acquire a set of knowledge and skills that allow them to:

• Recognize the peculiarities of geographical data in relation to classical statistical analysis techniques

- Evaluate statistical analysis results based on statistical tests
- Propose different mathematical analysis models depending on the nature of the data
- Understand scientific publications that apply advanced statistical analysis methods

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Individual work
- Production of free, creative and inductive thinking

(3) SYLLABUS

- 1. Multiple regression analysis: variable selection methods, analysis of the residuals, spatial autocorrelation
- 2. Specialized regression models: trend surface analysis, regression models for discrete variables, spatial regression models
- 3. Multivariate analysis methods: factor analysis, cluster analysis, discriminant analysis
- 4. Geostatistical methods: variogram, spatial interpolation (kriging), cokriging methods
- 5. Geocomputation: neural networks, fuzzy logic, genetic algorithms, cellular automata, agent-based models

DELIVERY	Face-to-Face				
USE OF INFORMATION	• Office software (word, presentations, spreadsheets				
ANDCOMMUNICATIONS	editors)				
TECHNOLOGY	 Utilization of E-class UNIW 	/A platform			
Use of ICT in teaching, laboratory education,	 Specialized statistical anal 	ysis and Geographic			
communication with students	Information Systems software				
TEACHING METHODS	Activity	Semester workload			
The manner and methods of teaching are described in detail.	Lectures	39			
	Lab exercises	13			
The student's study hours for each learning	Study and analysis of	58			
activity are given as well as the hours of non- directed study according to the principles of the	bibliography				
ECTS	Semester project	40			
	preparation and writing				
	Course total	150			

(4) TEACHING and LEARNING METHODS - EVALUATION

	TUDENT PERFORMANCE	Language of evaluation: Greek		
De	escription of the evaluation procedure	Methods of evaluation: i. Written exam at the end of the semester (50%)		
giv	ecifically-defined evaluation criteria are ven, and if and where they are accessible to udents.		which includes questions and exercises on both theoretical and practical objectives related to the course	
		ii.	Intermediate written exam (10%) which includes questions and exercises on both theoretical and practical objectives related to the course	
		iii.	Semester project (40%)	

(5) ATTACHED BIBLIOGRAPHY

- 1. Iliopoulou P. 2015. Spatial Anlaysis. [e-book] Athens Hellenic Academic Libraries Link (Heal Link). Available at http://hdl.handle.net/11419/2059
- 2. Kalogirou, S. (2015). Spatial Analysis (in Greek). [ebook] Athens: Hellenic Academic Libraries Link. Available online at: http://hdl.handle.net/11419/5029
- 3. Koutsopoulos, K. (2009). Discourse essay on Spatial Analysis, Volumes A' and B' (in Greek). Athens: Papasotiriou Publications.
- 4. Roiger, R. J. & Geatz, M.W. (2008). Data Mining: A Tutorial-Based Primer (in Greek). Athens: Klidarithmos Publications
- 5. Abrahart, R. J. & See, L. (2014). Geocomputation (2nd ed.). Boca Raton, FL: CRC Press.
- 6. Anselin, L. & Rey, S. J. (2014). Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL, GeoDa Press LLC, ISBN:0986342106
- 7. Fotheringham, S. A., Brudson, C. & Charlton, M. (2000). Quantitative Geography-Perspectives on Spatial Data Analysis, London: SAGE Publications.
- 8. Haining, R. (2004). Spatial data analysis. Theory and practice. Cambridge, UK: Cambridge University Press.
- 9. Isaaks, E. H. & Srivastava, M. R. (1989). Applied geostatistics. New York: Oxford University Press.
- 10. O' Sullivan, D. & Unwin, D.J. (2010). Geographic Information Analysis, John Wiley.

GEO9140 – SPECIAL ISSUES ON REAL ESTATE VALUATION

COURSE OUTLINE: GEO9140 - SPECIAL ISSUES ON REAL ESTATE VALUATION

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS			
	ENGINEERIN	IG		
LEVEL OF STUDIES	Undergradu	ate		
COURSE CODE	GEO1940		SEMESTER 9 th	
COURSE TITLE	SPECIAL ISSU	JES ON REAL ES	STATE VALUATIO	N
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits ar course, give the weekly teaching ho	ments of the course, e.g. lectures, re awarded for the whole of the TEACHIN			CREDITS
	Lectures 3 4			
	Lab exercises 1 1			
	TOTAL 4 5			
COURSE TYPE	Special background, specialised general knowledge			
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes			
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/GEO237/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

The course aims to the specialized knowledge acquisition in advanced methods of real estate valuation and the international valuation standards.

Upon successful completion of the course the student will:

- Know the real estate valuation methods
- Understand the real estate investment valuation methods
- Know the business' location criteria
- Be able to apply advanced valuation methods on commercial real estate
- Know the international valuation standards and their application on the occupation of the valuer in real estate property
- \circ $\ \ \,$ Be able to apply methods of real estate valuation by using computer
- \circ $\ \ \,$ Be able to apply geoinformatics in real estate valuation methods

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Working independently
- Team work

(3) SYLLABUS

- 1. Investment valuation principles
- 2. Business' location theories
- 3. Investments on commercial real estate
- 4. Valuation of commercial real estate: income method, interest rates of investments, discounted cash flows analysis, internal return of investment
- 5. Computer Assisted Mass Appraisal (CAMA) by using computers and mathematical models
- 6. International valuation standards
- 7. Applications of geoinformatics in real estate valuation methods

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to face				
USE OF INFORMATION	Utilization of E-class UNIWA p	olatform (file exchange			
ANDCOMMUNICATIONS	among professors and studen	its)			
TECHNOLOGY	Power point presentations				
Use of ICT in teaching, laboratory education,	Use of office management ap	plications and statistical			
communication with students	analysis software for conduct	ing studies			
TEACHING METHODS	Activity	Semester workload			
The manner and methods of teaching are	Lectures	52			
described in detail.	Lab exercises	13			
	Conducting studies and	10			
The student's study hours for each learning activity are given as well as the hours of non-	projects	40			
directed study according to the principles of the	Study and analysis of	45			
ECTS	bibliography 45 Course total 100				
STUDENT PERFORMANCE	I. Written final exam (60%) v	vhich includes:			
EVALUATION	 Questions regarding theory 				
Description of the evaluation procedure	 Problem solving ques 	tions			
aiven and if and where they are accessible to					
students.	III. Conducting studies and pro	esentation (30%)			

(5) ATTACHED BIBLIOGRAPHY

In Greek:

- 1. Baum A., Mackmin D., Nunnington N. 2010. *Real estate valuation using the income method*, Kleidarithmos Athens.
- Zedelis, P. 2015. *Real Estate*. [e-book] Athens: Hellenic Academic Libraries Union. Available at: <u>http://hdl.handle.net/11419/4235</u>. Karanikolas N. 2010. *Real estate evaluation*, Disigma Publications, Thessaloniki
- 3. Kiohos, P.. 2010. *Introduction to real estate valuation methods*, Eleni Kiohou Publishers, Athens.
- 4. Scarrett D. 2012. *Real estate valuation: the five methods,* Kleidarithmos Publishers, Athens

In English:

- 5. Baranzini A., Ramirez J., Schaerer C. and Thalmann P. (eds.) 2008. Hedonic Methods in Housing Markets, New York: Springer.
- 6. Ratcliffe J., Stubbs M. and Keeping M. 2009. Urban Planning and Real Estate Development, London: Routledge.
- 7. Rattermann M.R. 2009. The Student Handbook to the Appraisal of Real Estate, 13th Edition, MAI, SRA.
- 8. Sayce S. Smith J., Cooper R. Venmore-Rowland P. 2006. Real Estate Appraisal From Value to Worth, Blackwell Publishing Ltd.
- 9. Shapiro E., Mackmin D. and Sams G. 2013. Modern Methods of Valuation, New York: Routledge.
- 10. The European Group of Valuers' Associations (TEGoVA) 2016. European Valuation Standards 2016, 8th edition, http://www.tegova.org/.

GEO9150 – INTELLIGENT TRANSPORT SYSTEMS

COURSE OUTLINE: GEO9150 - INTELLIGENT TRANSPORT SYSTEMS

(1) **GENERAL**

SCHOOL	SCHOOL OF ENGINEERING				
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS				
	ENGINEERIN	IG			
LEVEL OF STUDIES	Undergradu	ate			
COURSE CODE	GEO9150		SEMESTER	9 th	
COURSE TITLE	Intelligent T	ransport Syste	ems		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	onents of the course, e.g. lectures, are awarded for the whole of the WEEKLY CREDIT			CREDITS	
Lectures & Individual Exercise (T	(Theoretical part of the Course) 2				
Group Exe	xercise (Lab Part of the Course) 2				
	Total 4 5			5	
COURSE TYPE	Specializatio	n		·	
PREREQUISITE COURSES:	No				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:					
IS THE COURSE OFFERED TO ERASMUS STUDENTS					
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/GEO233/				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

After the successful completions of the course, students will be able to:

- Learn the characteristics of autonomous vehicles and driving assistant systems
- Realize the benefits of applying artificial intelligence to transport
- Understand real-time management systems and telematics
- Solve simple applications in a traffic simulation program

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

After the successful completions of the course, students acquire the following knowledge and skills:

- Search for analysis and synthesis of data and information, with the use of the necessary technology
- Adaptation to new situations
- Autonomous work
- Production of free, creative and inductive thinking
- Exercise criticism and self-criticism
- Work in an interdisciplinary environment

(3) SYLLABUS

Theoretical part of the Course

- Introduction to the application of artificial intelligence in transport.
- Autonomous vehicles
- Driving assistant systems
- Telematics in transport
- Network optimization
- Real-time management systems
- Centralized and distributed controls and decision-making methods
- Applied statistical standardization
- Stated Preference Surveys
- Traffic simulation software

Lab Part of the Course

Preparation of a group theme (groups of 4 people) based on a questionnaire survey with the method of stated preference analysis

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	• Face-to-Face			
DELIVERT				
	Lectures - interactive teaching in the classroom			
	 Encouraging students to attend related Workshops, 			
	Conferences, etc.			
USE OF INFORMATION	Presentations in the blackl	board		
ANDCOMMUNICATIONS	 Presentations through Pow 	ver Point slides		
TECHNOLOGY				
Use of ICT in teaching, laboratory education, communication with students				
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are	Lectures	52 (13 X 4)		
described in detail.	Students create groups of 4	60		
The student's study hours for each learning activity are given as well as the hours of non-	students and prepare a	80		
directed study according to the principles of the				
ECTS	group theme in a			
	questionnaire survey using			
	the Stated preference			
	analysis			
	Study and preparation for 38			
	the exams			
	Course total 150			
STUDENT PERFORMANCE	Language of evaluation: Gre	ek		
EVALUATION				
Description of the evaluation procedure	Theoretical part of the Course			
	Written exam (70%)			
Specifically-defined evaluation criteria are				
given, and if and where they are accessible to	Lab Part of the Course			
students.		esentation of a semester		
		esentation of a semester		
	topic (30%)			

- 53. Autonomous Driving, Technical, Legal and Social Aspects, by Markus Maurer, Christian Gerdes, Barbara Lenz, Hermann Winner, SpringerLInk edition
- 54. Marsland, S. (2014). Machine learning: an algorithmic perspective. CRC press.
- 55. Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Steinbrecher, M., & Held, P. (2013). Computational intelligence: a methodological introduction. Springer Science & Business Media.
- 56. Karlaftis, M. G. and Vlahogianni, E. I. (2011). Statistics versus Neural Networks in Transportation Research: Differences, Similarities and Some Insights, Transportation Research Part C: Emerging Technologies, 19(3), 387-399.
- 57. Engelbrecht, A. P. (2007). Computational intelligence: an introduction. John Wiley & Sons.
- 58. TRB (2007). Artificial Intelligence in Transportation: Information for Application, Transportation Research Circular E-C113, Transportation Research Board, Washington DC.
- *59. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.*

GEO9160 – GROUNDWATER HYDRAULICS

COURSE OUTLINE: GEO9160 - GROUNDWATER HYDRAULICS

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING				
ACADEMIC UNIT	DEPARTMENT OF SURVEYING AND GEOINFORMATICS				
	ENGINEERIN				
LEVEL OF STUDIES	Undergradu	ate			
COURSE CODE	GEO 9160 SEMESTER 9 th				
COURSE TITLE	GROUNDW#	TER HYDRAUL	ICS		
INDEPENDENT TEACHI if credits are awarded for separate co lectures, laboratory exercises, etc. If the cr of the course, give the weekly teachin	components of the course, e.g. WEEKLY credits are awarded for the whole TEACHIN			CREDITS	
	Lectures				
	Lab exercises 1				
		Total	4		5
COURSE TYPE	Special back	ground			
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)				
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Upon successful completion of the course the students will:

1. Be familiar with the basic properties of groundwater movement, understand Darcy's law and its applications, know the basic hydraulic properties of groundwater aquifers such as hydraulic conductivity, permeability and porosity.

2. Onderstand the basics of groundwater hydrology: groundwater distribution, aquifers and categories thereof. Confined and un-confined aquifers. Water table - groundwater level. Pumping and potentiometric surface.

3. Be familiar with the graphical construction of groundwater flow networks and the concept of the water yielding capacity of a hydrogeological basin.

4. Be able to do basic calculations with the help of specialized software programs in MATLAB.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information
- Decision-making
- Working independently
- Team work
- Project planning and management
- Respect for the natural environment

(3) SYLLABUS

Groundwater. Approach of the equivalent continuous medium. Groundwater hydraulics, steady and unsteady flow. Groundwater movement - Darcy's law and hydraulic conductivity: hydraulic head, hydraulic gradient, Darcy's experiment, Darcy's law, hydraulic conductivity, permeability, transmissivity, hydraulic conductivity estimation (types of methods). The continuity equation for flow in groundwater aquifers. Horizontal groundwater flow equations. Heterogeneity and anisotropy. Groundwater hydrology: Groundwater distribution (aquifers, aquifer categories). Confined and unconfined aquifers. Water table- water level in well. Groundwater flow networks and water yield. Well hydrographs. Aquifer tests by well methods. The Cooper-Jacob method. Hydrogeological basin - Recharge - Discharge. Aquifer storage. Groundwater balance. One-dimensional flow. Steady flow into wells. Well radius of influence. Piezometry - Flow Networks: level variation, metering, potentiometric surface maps. Pumping and pumping tests. Critical pumping discharge. Over-pumping and consequences.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY.	Face-to-Face		
ANDCOMMUNICATIONS TECHNOLOGY	Learning process support through the electronic platform e-class Communication with students via e-class and e-mail Extensive use of Microsoft Excel.		
TEACHING	Activity Semester workload		
	Lectures 29		
The manner and methods of teaching are described in detail.	e Laboratory practice 29		
	Individual assignments	23	
The student's study hours for each learning	Laboratory Teamwork	36	
activity are given as well as the hours of non- directed study according to the principles of the	Standalone study	23	
ECTS	Course total	150	

EVALUATION	Theory • Final exam, 70% • Practical exercises, 30%
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	

(5) ATTACHED BIBLIOGRAPHY

In Greek

- (1) Elements of Physical Hydrology, G. Hornberger et al., Translated in Greek by S.H. Karalis, Publisher DISIGMA, 2019.
- (2) Groundwater Hydraulics, D. Tolikas, Publisher Epikentro (In Greek)
- (3) General Hydrogeology, G. Soulios. (In Greek)

- Related academic journals:

- (4) HYDROTECHNICA, Journal of the Hellenic Hydrotechnical Association
- (5) Water Science and Technology, IWA Publishing
- (6) Journal of Hydrogeology & Hydrologic Engineering.
- (7) International Journal of Hydrology Science and Technology.

GEO9170 – ROAD SAFETY AND URBAN ROAD NETWORKS COURSE OUTLINE: GEO9170 - ROAD SAFETY AND URBAN ROAD NETWORKS

(1) GENERAL

SCHOOL	SCHOOL OF ENGINEERING				
ACADEMIC UNIT		DEPARTMENT OF SURVEYING AND GEOINFORMATICS ENGINEERING			
LEVEL OF STUDIES	Undergradu	ate			
COURSE CODE	GEO9170		SEMESTER	9 th	
COURSE TITLE	ROAD SAFE	TY AND URBAN	N ROAD NETV	VORKS	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are aw give the weekly teaching hours	onents of the course, e.g. lectures, warded for the whole of the course, TEACHIN CREDIT			CREDITS	
Lectures & Individual Exercise (1	heoretical par	t of the Course)	2		
Group Ex	xercise (Lab Part of the Course)		2		
	Total		4		5
COURSE TYPE	Specialization				
PREREQUISITE COURSES:	No				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)				
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/GEO222/				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

After the successful completion of the course, students will be able to:

- Know the basic concepts and dimensions of Road Safety
- realize the benefits of an integrated parking management system
- understand the characteristics of parking and the importance of data collection and analysis to identify hazardous locations and problems and evaluate relevant measures
- consolidate the influence of various factors (driver, infrastructure, vehicle) in causing and dealing with road accidents

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

After the successful completion of the course, students acquire the following knowledge and skills:

- Search for analysis and synthesis of data and information with the use of the necessary technology
- Adapting to new situations
- Decision-making
- Working independently
- Criticism and self-criticism
- Design and project management
- Production of free, creative and inductive thinking

(3) SYLLABUS

Theoretical part of the Course

Road Safety

29.Data Collection and Analysis

- 30. Correlation of Accidents with Road Environmental Characteristics
- 31. Correlation of Accidents with User and Vehicle Characteristics
- 32.Identification of black spots
- 33.Study of black spots and Improvements
- 34. Evaluation of Improvement results

Urban Road Network

- 35. Parking Characteristics Surveys
- 36.Layout characteristics of Parking places

37. Multilevel parking stations – Bus stations

38.Research - Construction – Maintenance

- 39. Operation & Exploitation of Parking places
- 40. Financial Data of Parking places

Lab Part of the Course

Students create groups of 4 students and carry out counts of pedestrians and vehicle conflicts at predetermined junctions at a major road artery of Athens area. Based on these counts, the first project concerns the analysis of data collected and the development of traffic conflicts diagrams and the second exercise concerns the calculations of concerns the identification of high risk sites.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-Face				
	 Lectures - interactive teaching in the classroom 				
	 Encouraging students to attend related Workshops, 				
	Conferences, etc.				
USE OF INFORMATION AND	Presentations in the black	board			
COMMUNICATIONS	Presentations through Pov				
TECHNOLOGY					
Use of ICT in teaching, laboratory education,					
communication with students					
TEACHING METHODS	Activity	Semester workload			
The manner and methods of teaching are	Lectures	52 (13 X 4)			
described in detail. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Students create groups of 4 students and carry out counts of pedestrians and vehicle conflicts at predetermined junctions at a major road artery of Athens area. Based on these counts, the first project concerns the analysis of data collected and the development of traffic conflicts diagrams and the second exercise concerns the calculations of concerns the identification of high risk sites. Study and preparation for the exams	60 38			
	Course total 150				
STUDENT PERFORMANCE	Language of evaluation: Gre				
EVALUATION					
Description of the evaluation procedure	Theoretical part of the Course				
	Written exam (70%)				
Specifically-defined evaluation criteria are					
given, and if and where they are accessible to	Lab Dart of the Course				
students.	Lab Part of the Course				
	 Delivery of individual 	tasks and oral examination			

60. Book: "Road Safety ", J. Frantzeskakis - J. Golias, 2	2008
61. Book «Parking», J. Frantzeskakis, M. Pitsiava-Latio	opoulou, D. Tsamboulas, 2002

GEO9180 – PROJECT (CONSTRUCTION) MANAGEMENT

COURSE OUTLINE: GEO9180 - PROJECT (CONSTRUCTION) MANAGEMENT

(1) **GENERAL**

SCHOOL	SCHOOL OF ENGINEERING				
ACADEMIC UNIT		DEPARTMENT OF SURVEYING AND GEOINFORMATICS ENGINEERING			
LEVEL OF STUDIES	Undergradu	ate – Level 7			
COURSE CODE	GEO9180 SEMESTER 9 th				
COURSE TITLE	PROJECT (CC	ONSTRUCTION)	MANAGEME	NT	
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are course, give the weekly teaching ho	ponents of the course, e.g. lectures, s are awarded for the whole of the TEACHIN CREI			CREDITS	
		Lectures	3		5
		Lab exercises			
	Total 3 5			5	
COURSE TYPE	E Extra knowledge for the discipline				
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek				
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Offered (English)				
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Upon successful completion of the course, students are expected to:

- Understand the life cycle of technical projects and realize the importance and implications of successful project management.
- Understand the concepts and methodologies of feasibility and value management of projects.
- Know the usefulness of scheduling technical projects, be able to schedule a simple project and be able to calculate the critical path and critical activities of a technical project.
- Understand the problem of allocating resources employed in a technical project and figure out ways to normalize resources.
- Understand the usefulness of financial planning of a technical project and calculate the cumulative cost and revenue-expenditure distribution curves.

- Perceive liquidity problems during the implementation of a technical project.
- Control the progress of the implementation of a technical project with the earned value method.
- Know the basic principles of managing studies and contracts and recognize their importance.
- Recognize the importance of quality management in technical projects and the basic principles of quality assurance.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Upon successful completion of the course, students are expected to acquire the following General Abilities:

- Application of knowledge in practice.
- Search, analysis and synthesis of data and information, using the necessary technologies.
- Project design and management.
- Decision making.
- Adapting to new situations
- Respect for legality.
- Autonomous work.
- Promoting free, creative and inductive thinking.

(3) SYLLABUS

1. Introduction to the subject of project management. Life cycle overview of technical projects & project management.

- 2. Feasibility analysis and value management of projects.
- 3. Work Breakdown Structure (WBS) overview
- 4. Introduction to scheduling technical projects and network analysis methods
- 5. Overview of the most common network project scheduling methods (CPM methods,

PERT. MPM), Time margins, GANTT diagram, critical path, critical activities, etc.

6. Overview of resource allocation planning methods (resource allocation problem, resource allocation diagram, smoothing).

7. Introduction to financial project planning (project budget, cumulative cost curve, direct - indirect costs, cost - revenue statement).

8. Overview of project progress control (earned value method).

9. Introduction to study management.

10. Introduction to contract management.

11. Introduction to quality management (basic infrastructure for quality, ISO 9000 in Construction - Processes. Quality Assurance, Quality Controls in technical projects, etc.)

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	o Lectures - interactive teach	ing in the classroom.			
	o Encouraging students to pr	o Encouraging students to prepare for the next lesson.			
	o Encouraging students to attend related Workshops,				
	Conferences, etc.				
	Solve exercises in the classro	om in an interactive way and			
	with the participation of stud				
USE OF INFORMATION					
	0 0	•			
ANDCOMMUNICATIONS	 Support of learning proce 	ess with asynchronous			
TECHNOLOGY	education platform.				
Use of ICT in teaching, laboratory education,					
communication with students					
TEACHING METHODS	Activity Semester workload				
The manner and methods of teaching are described in detail.	Lectures 39				
	Independent Study	61			
are given as well as the hours of non-directed	Course total	150			
study according to the principles of the ECTS					
STUDENT PERFORMANCE	Language of evaluation: Greek				
EVALUATION					
Description of the evaluation procedure	Methods of evaluation:				
Specifically-defined evaluation criteria are					
given, and if and where they are accessible to students.					

- 1. Burke, R. (2002). *Project management Design techniques & control*, KRITIKI PUBLISHING.
- 2. Ritz, G. (1994). Total construction project management. Mcgraw-Hill.
- 3. Efraimidis X. (1999). Construction management.
- 4. Pantouvakis, P. (2012) *Management of construction projects*, Athens ISBN 978-960-93-4595-8.
- 5. Polyzos, S. (2018). Project management Methods & Techniques, KRITIKI PUBLISHING
- 6. Ypsilantis, P. (2005). *Project management The Greek experience*, Propompos Publishing

10th Semester

GEO1001 – DIPLOMA THESIS

COURSE OUTLINE: GEO1001 – DIPLOMA THESIS

(1) GENERAL

SCHOOL	ENGINEERING			
ACADEMIC UNIT	DEPT. OF SURVEYING & GEONIFORMATICS ENGINEERING			
LEVEL OF STUDIES	Graduate –	Graduate – Level 7		
COURSE CODE	GEO1001	GEO1001 SEMESTER 10 th		
COURSE TITLE	GEO1001 Di	ploma Thesis		
INDEPENDENT TEACHI if credits are awarded for separate compor laboratory exercises, etc. If the credits are awar the weekly teaching hours ar	onents of the course, e.g. lectures, arded for the whole of the course, give TEACHING CREDITS			
	Lectu	ures and Labs		
		TOTAL		30
COURSE TYPE	Skills develo	opment		
PREREQUISITE COURSES				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
OFFERED TO ERASMUS STUDENTS	In English			
COURSE WEBSITE (URL)	https://eclas c=75	s.uniwa.gr/mo	dules/auth/c	pencourses.php?f

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Basic purpose of the Diploma Thesis is, first, to familiarize students with the process of preparing an extensive self-standing scientific work on a topic within the subject of the Department. At the same time, it aims at a deepening of the knowledge accumulated during their studies and their use at the theoretical/research level or/and that of applications of a certain novelty. Through their Thesis, students are expected to further develop their capability of systematic, critical investigation of international literature, which basically they should gather themselves, and their ability to integrate knowledge from different sources, thus becoming able to address their subject with the appropriate approach. In this sense, the preparation of a Diploma Thesis is of high importance in order to advance the scientific way of though and research for the generation of new knowledge.

Successful completion of the Thesis implies that the students have in fact mastered the scientific fundaments of today's concepts, methodologies and techniques in the field of our Department and are in position to both analyze the components of a problem and recognize their significance, thus being able to rank them. It also means that they are in position to look for the suitable sources through the international literature, in order to have a clear overview of the state-of-the-art, and hence are able to design a both scientifically and

practically sound as well effective approach. Finally, it is expected that students will thus be able to realistically evaluate the results of their work, to suggest possible alternatives and to document their conclusions in writing as well as orally during their presentation.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Practical application of knowledge
- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Decision-making
- Working independently
- Production of new research ideas
- Criticism and self-criticism
- Production of free, creative and inductive thinking

(3) SYLLABUS

The Diploma Thesis is an extended work (analytic, synthetic or an application of some novelty), prepared individually by students during the 10th (and last) semester of their studies, in order to further develop their knowledge in a topic of their choice among those offered in our Department. The subject is established in collaboration of the students with the supervising professor of their choice, and the Thesis is prepared by the students under the guidance of the supervisor. The Thesis is the work of the students and documents their ability to complete an autonomous scientific work, to handle with ease the international literature, and to write and present the result by following the rules and principles of the concerned scientific domain.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to-face		
USE OF INFORMATION ANDCOMMUNICATIONS TECHNOLOGY	- Support by the electronic asynchronous course platform <i>eclass</i>		
Use of ICT in teaching, laboratory education, communication with students	- Use of commercial and/or self-developed software		
TEACHING METHODS	Activity Semester workload		
The manner and methods of teaching are described in detail. The student's study hours for each learning	Study and review of literature	300	
activity are given as well as the hours of non-	Preparation of Thesis	300	
directed study according to the principles of the ECTS	Writing of the Thesis	300	
	Course total	900	

STUDENT PERFORMANCE	Language of evaluation:	1		
EVALUATION Description of the evaluation procedure	Greek (in English for Erasmus students)			
Description of the evaluation procedure				
Specifically-defined evaluation criteria are	The evaluation of the Thesis takes place in a public			
given, and if and where they are accessible to students.	presentation and is rated by a three-member			
	examining committee			
	Criteria of Evaluation:			
	Originality, theoretical soundness, literature review:			
	15%			
	• Scientific content (text structure, methodology,			
	research, soundness of conclusions): 70%			
	 Quality of oral presentation: 15% 			